Eliasson Henrik, Erni Rolf
Electron Microscopy Center, Empa - Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland.
Department of Materials, ETH Zürich, CH-8093 Zürich, Switzerland.
NPJ Comput Mater. 2024;10(1):168. doi: 10.1038/s41524-024-01360-0. Epub 2024 Aug 3.
To accurately capture the dynamic behavior of small nanoparticles in scanning transmission electron microscopy, high-quality data and advanced data processing is needed. The fast scan rate required to observe structural dynamics inherently leads to very noisy data where machine learning tools are essential for unbiased analysis. In this study, we develop a workflow based on two U-Net architectures to automatically localize and classify atomic columns at particle-support interfaces. The model is trained on non-physical image simulations, achieves sub-pixel localization precision, high classification accuracy, and generalizes well to experimental data. We test our model on both in situ and ex situ experimental time series recorded at 5 frames per second of small Pt nanoparticles supported on CeO(111). The processed movies show sub-second dynamics of the nanoparticles and reveal site-specific movement patterns of individual atomic columns.
为了在扫描透射电子显微镜中准确捕捉小纳米颗粒的动态行为,需要高质量的数据和先进的数据处理方法。观察结构动力学所需的快速扫描速率必然会导致数据噪声很大,而机器学习工具对于无偏分析至关重要。在本研究中,我们开发了一种基于两种U-Net架构的工作流程,用于自动定位和分类颗粒-载体界面处的原子列。该模型在非物理图像模拟上进行训练,实现了亚像素定位精度、高分类准确率,并且能很好地推广到实验数据。我们在原位和非原位实验时间序列上测试了我们的模型,这些时间序列是在每秒5帧的情况下记录的负载在CeO(111)上的小Pt纳米颗粒。处理后的影片展示了纳米颗粒的亚秒级动力学,并揭示了单个原子列的位点特异性运动模式。