Rengifo-Correa Laura, González-Salazar Constantino, Stephens Christopher R
C3 - Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, CDMX, Mexico.
C3 - Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, CDMX, Mexico; ICAyCC - Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, CDMX, Mexico.
Acta Trop. 2023 Feb;238:106757. doi: 10.1016/j.actatropica.2022.106757. Epub 2022 Nov 17.
The potential benefits of incorporating biotic, as well as abiotic, predictors in niche and species distribution models (SDMs), as well as how to achieve this, is still debated, with their interpretability and explanatory potential being particularly questioned. It is therefore important to stress test modelling methodologies that include biotic factors against use cases where there is ample knowledge of the potential biotic component of the niche. Relatively well studied and important vector-borne diseases offer just such an opportunity, where knowledge of the agents involved in the transmission cycle -vectors and hosts- can serve to calibrate and test the niche model and corresponding SDM. Here, we study the contributions of biotic -14 vectors, 459 potential hosts- and abiotic -258 climatic categories- predictors to the explanatory and predictive features of the niche and corresponding SDM for the etiological agent of Chagas disease, Trypanosoma cruzi, in Mexico. Using an established spatial data mining technique, we generate biotic, abiotic and biotic+abiotic niche and SDM models. We test our models by comparing predictions of the most important probable hosts of Chagas disease with a previously published list of confirmed hosts. We quantify, compare, and contrast the individual and total contributions of predictors to the niche and distribution of Chagas disease in Mexico. We assess the relative predictive potential of these variables to model performance, showing that models that include relevant biotic niche variables lead to more predictive, more ecologically realistic SDMs. Our research illustrates a useful general procedure for identifying and ranking potential biotic interactions and for assessing the relative importance of biotic and abiotic predictors. We conclude that the inclusion of both abiotic and biotic predictors in SDMs not only provides more predictive and accurate models but also models that are more understandable and explainable from an ecological niche perspective.
在生态位和物种分布模型(SDM)中纳入生物和非生物预测因子的潜在益处以及如何实现这一点仍存在争议,其可解释性和解释潜力尤其受到质疑。因此,对包含生物因子的建模方法进行压力测试非常重要,测试对象是那些对生态位潜在生物成分有充分了解的用例。相对研究充分且重要的媒介传播疾病就提供了这样一个机会,在这类疾病中,对传播周期中涉及的媒介和宿主等病原体的了解可用于校准和测试生态位模型及相应的SDM。在此,我们研究了生物预测因子(14种媒介、459种潜在宿主)和非生物预测因子(258种气候类别)对墨西哥恰加斯病病原体克氏锥虫的生态位及相应SDM的解释和预测特征的贡献。我们使用一种既定的空间数据挖掘技术,生成了生物、非生物以及生物+非生物的生态位和SDM模型。我们通过将恰加斯病最重要的可能宿主的预测结果与先前公布的确诊宿主列表进行比较来测试我们的模型。我们量化、比较并对比了预测因子对墨西哥恰加斯病生态位和分布的个体贡献和总体贡献。我们评估了这些变量对模型性能的相对预测潜力,结果表明包含相关生物生态位变量的模型会产生更具预测性、更符合生态现实的SDM。我们的研究说明了一种有用的通用程序,用于识别和排列潜在的生物相互作用,并评估生物和非生物预测因子的相对重要性。我们得出结论,在SDM中纳入非生物和生物预测因子不仅能提供更具预测性和准确性的模型,还能提供从生态位角度更易于理解和解释的模型。