Lehrstuhl für Physikalische Chemie, TUM School of Natural Sciences, Technische Universität München, Lichtenbergstraße 4, 85748, Garching, Germany.
Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020, Innsbruck, Austria.
Chemistry. 2023 Feb 10;29(9):e202203259. doi: 10.1002/chem.202203259. Epub 2022 Dec 27.
Understanding molecular-scale reaction mechanisms is crucial for the design of modern catalysts with industrial prospect. Through joint experimental and computational studies, we investigate the direct coupling reaction of CH and CO , two abundant greenhouse gases, mediated by Ta ions to form larger oxygenated hydrocarbons. Coherent with proposed elementary steps, we expose products of CH dehydrogenation [Ta CH ] to CO in a ring electrode ion trap. Product analysis and reaction kinetics indicate a predisposition of the tetramers for C-O coupling with a conversion to products of CH O, whereas atomic cations enable C-C coupling yielding CH CO. Selected experimental findings are supported by thermodynamic computations, connecting structure, electronic properties, and catalyst function. Moreover, the study of bare Ta compounds indicates that methane dehydrogenation is a significant initial step in the direct coupling reaction, enabling new, yet unknown reaction pathways.
理解分子尺度的反应机制对于设计具有工业前景的现代催化剂至关重要。通过联合实验和计算研究,我们研究了 Ta 离子介导的 CH 和 CO 两种丰富的温室气体的直接偶联反应,生成更大的含氧烃。与提出的基元步骤一致,我们将 CH 脱氢的产物 [TaCH]暴露于环形电极离子阱中的 CO 中。产物分析和反应动力学表明四聚体具有与 C-O 偶联的倾向性,生成 CH O 的产物,而原子阳离子则能促进 C-C 偶联,生成 CH CO。选择的实验结果得到了热力学计算的支持,将结构、电子性质和催化剂功能联系起来。此外,对裸露的 Ta 化合物的研究表明,甲烷脱氢是直接偶联反应的重要初始步骤,开辟了新的、未知的反应途径。