Suppr超能文献

使用开放街道地图预测建筑类型。

Predicting building types using OpenStreetMap.

作者信息

Atwal Kuldip Singh, Anderson Taylor, Pfoser Dieter, Züfle Andreas

机构信息

Geography and Geoinformation Science, George Mason University, Fairfax, VA, 22030, USA.

Department of Computer Science, Emory University, Atlanta, GA, 30322, USA.

出版信息

Sci Rep. 2022 Nov 20;12(1):19976. doi: 10.1038/s41598-022-24263-w.

Abstract

Having accurate building information is paramount for a plethora of applications, including humanitarian efforts, city planning, scientific studies, and navigation systems. While volunteered geographic information from sources such as OpenStreetMap (OSM) has good building geometry coverage, descriptive attributes such as the type of a building are sparse. To fill this gap, this study proposes a supervised learning-based approach to provide meaningful, semantic information for OSM data without manual intervention. We present a basic demonstration of our approach that classifies buildings into either residential or non-residential types for three study areas: Fairfax County in Virginia (VA), Mecklenburg County in North Carolina (NC), and the City of Boulder in Colorado (CO). The model leverages (i) available OSM tags capturing non-spatial attributes, (ii) geometric and topological properties of the building footprints including adjacent types of roads, proximity to parking lots, and building size. The model is trained and tested using ground truth data available for the three study areas. The results show that our approach achieves high accuracy in predicting building types for the selected areas. Additionally, a trained model is transferable with high accuracy to other regions where ground truth data is unavailable. The OSM and data science community are invited to build upon our approach to further enrich the volunteered geographic information in an automated manner.

摘要

拥有准确的建筑信息对于众多应用至关重要,包括人道主义救援、城市规划、科学研究和导航系统。虽然来自OpenStreetMap(OSM)等来源的 volunteered 地理信息具有良好的建筑几何覆盖范围,但诸如建筑类型等描述性属性却很稀少。为了填补这一空白,本研究提出了一种基于监督学习的方法,无需人工干预即可为OSM数据提供有意义的语义信息。我们展示了我们方法的一个基本示例,该示例将弗吉尼亚州(VA)的费尔法克斯县、北卡罗来纳州(NC)的梅克伦堡县以及科罗拉多州(CO)的博尔德市三个研究区域的建筑分为住宅或非住宅类型。该模型利用(i)捕获非空间属性的可用OSM标签,(ii)建筑占地面积的几何和拓扑属性包括相邻道路类型、与停车场的距离以及建筑规模。使用这三个研究区域可用的地面真值数据对模型进行训练和测试。结果表明,我们的方法在预测所选区域的建筑类型方面具有很高的准确性。此外,经过训练的模型可以高精度地转移到没有地面真值数据的其他区域。邀请OSM和数据科学界在我们的方法基础上进一步以自动化方式丰富 volunteered 地理信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff0c/9676186/0c83d5caf9b6/41598_2022_24263_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验