Suppr超能文献

20 个美国城市的城市级交通分配模型统一数据集。

A unified dataset for the city-scale traffic assignment model in 20 U.S. cities.

机构信息

Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, 999077, China.

The Department of Civil and Environmental Engineering, Princeton University, Princeton, 08544, USA.

出版信息

Sci Data. 2024 Mar 29;11(1):325. doi: 10.1038/s41597-024-03149-8.

Abstract

City-scale traffic data, such as traffic flow, speed, and density on every road segment, are the foundation of modern urban research. However, accessing such data on a city scale is challenging due to the limited number of sensors and privacy concerns. Consequently, most of the existing traffic datasets are typically limited to small, specific urban areas with incomplete data types, hindering the research in urban studies, such as transportation, environment, and energy fields. It still lacks a city-scale traffic dataset with comprehensive data types and satisfactory quality that can be publicly available across cities. To address this issue, we propose a unified approach for producing city-scale traffic data using the classic traffic assignment model in transportation studies. Specifically, the inputs of our approach are sourced from open public databases, including road networks, traffic demand, and travel time. Then the approach outputs comprehensive and validated citywide traffic data on the entire road network. In this study, we apply the proposed approach to 20 cities in the United States, achieving an average correlation coefficient of 0.79 in average travel time and an average relative error of 5.16% and 10.47% in average travel speed when compared with the real-world data.

摘要

城市级交通数据,如每条道路路段的交通流量、速度和密度,是现代城市研究的基础。然而,由于传感器数量有限和隐私问题,在城市范围内获取此类数据具有挑战性。因此,大多数现有的交通数据集通常仅限于小型特定城市区域,且数据类型不完整,这阻碍了城市研究领域(如交通、环境和能源领域)的研究。仍然缺乏具有全面数据类型和令人满意质量的城市级交通数据集,可以在各个城市公开使用。为了解决这个问题,我们提出了一种使用交通研究中经典交通分配模型生成城市级交通数据的统一方法。具体来说,我们方法的输入来自包括道路网络、交通需求和旅行时间在内的公开公共数据库。然后,该方法输出整个道路网络上的全面且经过验证的全市交通数据。在这项研究中,我们将所提出的方法应用于美国的 20 个城市,与真实世界数据相比,平均旅行时间的平均相关系数为 0.79,平均旅行速度的平均相对误差为 5.16%和 10.47%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d644/10980787/67c0f35299da/41597_2024_3149_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验