Suppr超能文献

血浆代谢组学和基因调控网络分析揭示了非结构 SARS-CoV-2 病毒蛋白在 COVID-19 患者代谢失调中的作用。

Plasma metabolomics and gene regulatory networks analysis reveal the role of nonstructural SARS-CoV-2 viral proteins in metabolic dysregulation in COVID-19 patients.

机构信息

Novosibirsk State University, Pirogova Str., 2, 630090, Novosibirsk, Russia.

Institute of Cytology and Genetics of Siberian Branch of Russian Academy of Sciences, Acad. Lavrentiev Ave., 10, 630090, Novosibirsk, Russia.

出版信息

Sci Rep. 2022 Nov 20;12(1):19977. doi: 10.1038/s41598-022-24170-0.

Abstract

Metabolomic analysis of blood plasma samples from COVID-19 patients is a promising approach allowing for the evaluation of disease progression. We performed the metabolomic analysis of plasma samples of 30 COVID-19 patients and the 19 controls using the high-performance liquid chromatography (HPLC) coupled with tandem mass spectrometric detection (LC-MS/MS). In our analysis, we identified 103 metabolites enriched in KEGG metabolic pathways such as amino acid metabolism and the biosynthesis of aminoacyl-tRNAs, which differed significantly between the COVID-19 patients and the controls. Using ANDSystem software, we performed the reconstruction of gene networks describing the potential genetic regulation of metabolic pathways perturbed in COVID-19 patients by SARS-CoV-2 proteins. The nonstructural proteins of SARS-CoV-2 (orf8 and nsp5) and structural protein E were involved in the greater number of regulatory pathways. The reconstructed gene networks suggest the hypotheses on the molecular mechanisms of virus-host interactions in COVID-19 pathology and provide a basis for the further experimental and computer studies of the regulation of metabolic pathways by SARS-CoV-2 proteins. Our metabolomic analysis suggests the need for nonstructural protein-based vaccines and the control strategy to reduce the disease progression of COVID-19.

摘要

对 COVID-19 患者血浆样本进行代谢组学分析是一种很有前途的方法,可以评估疾病的进展。我们使用高效液相色谱(HPLC)与串联质谱检测(LC-MS/MS)对 30 名 COVID-19 患者和 19 名对照者的血浆样本进行了代谢组学分析。在我们的分析中,我们鉴定了 103 种代谢物,这些代谢物在KEGG 代谢途径中富集,如氨基酸代谢和氨酰-tRNA 生物合成,这些代谢物在 COVID-19 患者和对照者之间有显著差异。我们使用 ANDSystem 软件,对由 SARS-CoV-2 蛋白引起的 COVID-19 患者代谢途径的潜在遗传调控进行描述的基因网络进行了重建。SARS-CoV-2 的非结构蛋白(orf8 和 nsp5)和结构蛋白 E 参与了更多的调控途径。重建的基因网络提出了关于 COVID-19 病理学中病毒-宿主相互作用的分子机制的假说,并为进一步研究 SARS-CoV-2 蛋白对代谢途径的调控提供了实验和计算机研究的基础。我们的代谢组学分析表明,需要基于非结构蛋白的疫苗和控制策略来降低 COVID-19 的疾病进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da1a/9676188/36ced3f4d8fb/41598_2022_24170_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验