Suppr超能文献

探索和工程化具有多样化 PAM 的链球菌 Cas9,用于细菌中 PAM 靶向的双功能和可滴定基因控制。

Exploring and engineering PAM-diverse Streptococci Cas9 for PAM-directed bifunctional and titratable gene control in bacteria.

机构信息

School of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA, 30602, USA.

School of Electrical and Computer Engineering, College of Engineering, The University of Georgia, Athens, GA, 30602, USA.

出版信息

Metab Eng. 2023 Jan;75:68-77. doi: 10.1016/j.ymben.2022.10.005. Epub 2022 Oct 29.

Abstract

The RNA-guided Cas9s serve as powerful tools for programmable gene editing and regulation; their targeting scopes and efficacies, however, are always constrained by the PAM sequence stringency. Most Streptococci Cas9s, including the prototype SpCas9 from S. pyogenes, specifically recognize a canonical NGG PAM via a conserved RxR PAM-binding motif within the PAM-interaction (PI) domain. Here, SpCas9-based mining unveils three distinct and rarely presented PAM-binding motifs (QxxxR, QxQ and RxQ) among Streptococci Cas9 orthologs. With the catalytically-dead QxxxR-containing SedCas9 from S. equinus, we dissect its NAG PAM specificity and elucidate its underlying recognition mechanism via computational prediction and mutagenesis analysis. Replacing the SedCas9 PI domain with alternate PAM-binding motifs rewires its PAM specificity to NGG or NAA. Moreover, a semi-rational design with minimal mutation creates a SedCas9-NQ variant showing robust activity towards expanded NNG and NAA PAMs, based upon which we engineered a compact ω-SedCas9-NQ transcriptional regulator for PAM-directed bifunctional and titratable gene control. The ω-SedCas9-NQ mediated metabolic reprogramming of endogenous genes in Escherichia coli affords a 2.6-fold increase of 4-hydroxycoumarin production. This work reveals new Cas9 scaffolds with distinct PAM-binding motifs for PAM relaxation and creates a new PAM-diverse Cas9 variant for versatile gene control in bacteria.

摘要

RNA 指导的 Cas9 可作为可编程基因编辑和调控的强大工具;然而,它们的靶向范围和效率始终受到 PAM 序列严格性的限制。大多数链球菌 Cas9,包括来自酿脓链球菌的原型 SpCas9,通过 PAM 相互作用(PI)结构域内保守的 RxR PAM 结合基序特异性识别典型的 NGG PAM。在这里,基于 SpCas9 的挖掘揭示了链球菌 Cas9 同源物中存在三种不同且很少出现的 PAM 结合基序(QxxxR、QxQ 和 RxQ)。使用来自马肠球菌的具有催化活性的 QxxxR 包含的 SedCas9,我们通过计算预测和突变分析来剖析其 NAG PAM 特异性并阐明其潜在的识别机制。用替代 PAM 结合基序替换 SedCas9 PI 结构域会将其 PAM 特异性重新编程为 NGG 或 NAA。此外,通过最小突变进行的半理性设计创建了 SedCas9-NQ 变体,该变体对扩展的 NNG 和 NAA PAMs 具有强大的活性,在此基础上,我们设计了一个紧凑的 ω-SedCas9-NQ 转录调控因子,用于 PAM 指导的双功能和可滴定基因控制。ω-SedCas9-NQ 介导的大肠杆菌内源基因的代谢重编程可使 4-羟基香豆素的产量增加 2.6 倍。这项工作揭示了具有不同 PAM 结合基序的新型 Cas9 支架,用于 PAM 松弛,并创建了一种新的 PAM 多样化 Cas9 变体,用于细菌中的多功能基因控制。

相似文献

2
Engineering a Cas9 Ortholog with an RxQ PAM-Binding Motif for PAM-Free Gene Control in Bacteria.
ACS Synth Biol. 2023 Sep 15;12(9):2764-2772. doi: 10.1021/acssynbio.3c00366. Epub 2023 Aug 29.
3
Molecular basis for the PAM expansion and fidelity enhancement of an evolved Cas9 nuclease.
PLoS Biol. 2019 Oct 11;17(10):e3000496. doi: 10.1371/journal.pbio.3000496. eCollection 2019 Oct.
5
Molecular Mechanism of D1135E-Induced Discriminated CRISPR-Cas9 PAM Recognition.
J Chem Inf Model. 2022 Jun 27;62(12):3057-3066. doi: 10.1021/acs.jcim.1c01562. Epub 2022 Jun 6.
6
Engineered dual selection for directed evolution of SpCas9 PAM specificity.
Nat Commun. 2021 Jan 13;12(1):349. doi: 10.1038/s41467-020-20650-x.
7
Engineering a PAM-flexible SpdCas9 variant as a universal gene repressor.
Nat Commun. 2021 Nov 25;12(1):6916. doi: 10.1038/s41467-021-27290-9.
8
Engineered CRISPR-Cas9 nucleases with altered PAM specificities.
Nature. 2015 Jul 23;523(7561):481-5. doi: 10.1038/nature14592. Epub 2015 Jun 22.
9
Evolved Cas9 variants with broad PAM compatibility and high DNA specificity.
Nature. 2018 Apr 5;556(7699):57-63. doi: 10.1038/nature26155. Epub 2018 Feb 28.
10
Expanding the scope of CRISPR/Cas9-mediated genome editing in plants using an xCas9 and Cas9-NG hybrid.
J Integr Plant Biol. 2020 Apr;62(4):398-402. doi: 10.1111/jipb.12886. Epub 2020 Jan 9.

引用本文的文献

1
Off-target interactions in the CRISPR-Cas9 Machinery: mechanisms and outcomes.
Biochem Biophys Rep. 2025 Jul 5;43:102134. doi: 10.1016/j.bbrep.2025.102134. eCollection 2025 Sep.
3
Current Updates of CRISPR/Cas System and Anti-CRISPR Proteins: Innovative Applications to Improve the Genome Editing Strategies.
Int J Nanomedicine. 2024 Oct 9;19:10185-10212. doi: 10.2147/IJN.S479068. eCollection 2024.
4
Investigating and Engineering an 1,2-Propanediol-Responsive Transcription Factor-Based Biosensor.
ACS Synth Biol. 2024 Jul 19;13(7):2177-2187. doi: 10.1021/acssynbio.4c00237. Epub 2024 Jul 5.
5
Engineering a Cas9 Ortholog with an RxQ PAM-Binding Motif for PAM-Free Gene Control in Bacteria.
ACS Synth Biol. 2023 Sep 15;12(9):2764-2772. doi: 10.1021/acssynbio.3c00366. Epub 2023 Aug 29.
6
The expanded CRISPR toolbox for constructing microbial cell factories.
Trends Biotechnol. 2024 Jan;42(1):104-118. doi: 10.1016/j.tibtech.2023.06.012. Epub 2023 Jul 26.

本文引用的文献

1
CRISPRi-seq for genome-wide fitness quantification in bacteria.
Nat Protoc. 2022 Feb;17(2):252-281. doi: 10.1038/s41596-021-00639-6. Epub 2022 Jan 7.
2
Engineering a PAM-flexible SpdCas9 variant as a universal gene repressor.
Nat Commun. 2021 Nov 25;12(1):6916. doi: 10.1038/s41467-021-27290-9.
3
Highly accurate protein structure prediction with AlphaFold.
Nature. 2021 Aug;596(7873):583-589. doi: 10.1038/s41586-021-03819-2. Epub 2021 Jul 15.
4
CRISPR-Act3.0 for highly efficient multiplexed gene activation in plants.
Nat Plants. 2021 Jul;7(7):942-953. doi: 10.1038/s41477-021-00953-7. Epub 2021 Jun 24.
5
Guide-target mismatch effects on dCas9-sgRNA binding activity in living bacterial cells.
Nucleic Acids Res. 2021 Feb 22;49(3):1263-1277. doi: 10.1093/nar/gkaa1295.
6
A catalogue of biochemically diverse CRISPR-Cas9 orthologs.
Nat Commun. 2020 Nov 2;11(1):5512. doi: 10.1038/s41467-020-19344-1.
7
Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors.
Nat Biotechnol. 2020 Jul;38(7):824-844. doi: 10.1038/s41587-020-0561-9. Epub 2020 Jun 22.
8
Multistable and dynamic CRISPRi-based synthetic circuits.
Nat Commun. 2020 Jun 2;11(1):2746. doi: 10.1038/s41467-020-16574-1.
9
A Cas9 with PAM recognition for adenine dinucleotides.
Nat Commun. 2020 May 18;11(1):2474. doi: 10.1038/s41467-020-16117-8.
10
An engineered ScCas9 with broad PAM range and high specificity and activity.
Nat Biotechnol. 2020 Oct;38(10):1154-1158. doi: 10.1038/s41587-020-0517-0. Epub 2020 May 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验