Suppr超能文献

使用线性切空间配准(LTSA)模型进行自由呼吸 3D 心脏细胞外容积(ECV)测绘。

Free-breathing 3D cardiac extracellular volume (ECV) mapping using a linear tangent space alignment (LTSA) model.

机构信息

Department of Radiology and Biomedical Imaging, Yale School of Medicine, Yale University, New Haven, Connecticut, USA.

LTCI, Télécom Paris, Institut Polytechnique de Paris, Paris, France.

出版信息

Magn Reson Med. 2025 Feb;93(2):536-549. doi: 10.1002/mrm.30284. Epub 2024 Oct 14.

Abstract

PURPOSE

To develop a new method for free-breathing 3D extracellular volume (ECV) mapping of the whole heart at 3 T.

METHODS

A free-breathing 3D cardiac ECV mapping method was developed at 3 T. T mapping was performed before and after contrast agent injection using a free-breathing electrocardiogram-gated inversion recovery sequence with spoiled gradient echo readout. A linear tangent space alignment model-based method was used to reconstruct high-frame-rate dynamic images from (k,t)-space data sparsely sampled along a random stack-of-stars trajectory. Joint T and transmit B estimation were performed voxel-by-voxel for pre- and post-contrast T mapping. To account for the time-varying T after contrast agent injection, a linearly time-varying T model was introduced for post-contrast T mapping. ECV maps were generated by aligning pre- and post-contrast T maps through affine transformation.

RESULTS

The feasibility of the proposed method was demonstrated using in vivo studies with six healthy volunteers at 3 T. We obtained 3D ECV maps at a spatial resolution of 1.9 × 1.9 × 4.5 mm and a FOV of 308 × 308 × 144 mm, with a scan time of 10.1 ± 1.4 and 10.6 ± 1.6 min before and after contrast agent injection, respectively. The ECV maps and the pre- and post-contrast T maps obtained by the proposed method were in good agreement with the 2D MOLLI method both qualitatively and quantitatively.

CONCLUSION

The proposed method allows for free-breathing 3D ECV mapping of the whole heart within a practically feasible imaging time. The estimated ECV values from the proposed method were comparable to those from the existing method.

摘要

目的

在 3T 下开发一种用于心脏整体自由呼吸三维细胞外容积(ECV)成像的新方法。

方法

在 3T 下开发了一种自由呼吸心脏 ECV 映射方法。使用自由呼吸心电图门控反转恢复序列结合扰相梯度回波读出进行 T 映射,在对比剂注射前后进行。采用基于线性切空间对齐模型的方法,从沿随机星形轨迹稀疏采样的(k,t)-空间数据中重建高帧率动态图像。对预对比和对比后 T 映射进行逐体素联合 T 和发射 B 估计。为了考虑对比剂注射后 T 随时间的变化,引入了一个线性时变 T 模型用于对比后 T 映射。通过仿射变换对齐预对比和对比后 T 图生成 ECV 图。

结果

使用六名健康志愿者在 3T 下的体内研究证明了所提出方法的可行性。我们获得了空间分辨率为 1.9×1.9×4.5mm 和 FOV 为 308×308×144mm 的 3D ECV 图,在对比剂注射前后分别需要 10.1±1.4 和 10.6±1.6min 的扫描时间。所提出方法获得的 ECV 图和预对比及对比后 T 图在定性和定量上均与 2D MOLLI 方法一致。

结论

该方法可在实际可行的成像时间内实现心脏整体自由呼吸 3D ECV 成像。所提出方法估计的 ECV 值与现有方法相当。

相似文献

1
Free-breathing 3D cardiac extracellular volume (ECV) mapping using a linear tangent space alignment (LTSA) model.
Magn Reson Med. 2025 Feb;93(2):536-549. doi: 10.1002/mrm.30284. Epub 2024 Oct 14.
3
Free-breathing 3D cardiac T mapping with transmit B correction at 3T.
Magn Reson Med. 2022 Apr;87(4):1832-1845. doi: 10.1002/mrm.29097. Epub 2021 Nov 23.
4
Free-breathing post-contrast three-dimensional T1 mapping: Volumetric assessment of myocardial T1 values.
Magn Reson Med. 2015 Jan;73(1):214-22. doi: 10.1002/mrm.25124. Epub 2014 Feb 5.
5
Free-breathing, non-ECG, continuous myocardial T mapping with cardiovascular magnetic resonance multitasking.
Magn Reson Med. 2019 Apr;81(4):2450-2463. doi: 10.1002/mrm.27574. Epub 2018 Nov 19.
6
Free-breathing 3D whole-heart joint T/T mapping and water/fat imaging at 0.55 T.
Magn Reson Med. 2024 Oct;92(4):1511-1524. doi: 10.1002/mrm.30139. Epub 2024 Jun 13.
7
3D myocardial T mapping using saturation recovery.
J Magn Reson Imaging. 2017 Jul;46(1):218-227. doi: 10.1002/jmri.25575. Epub 2017 Feb 2.
8
Free-running simultaneous myocardial T1/T2 mapping and cine imaging with 3D whole-heart coverage and isotropic spatial resolution.
Magn Reson Imaging. 2019 Nov;63:159-169. doi: 10.1016/j.mri.2019.08.008. Epub 2019 Aug 16.
10
Free-breathing, fat-corrected T mapping of the liver with stack-of-stars MRI, and joint estimation of T, PDFF, , and .
Magn Reson Med. 2024 Nov;92(5):1913-1932. doi: 10.1002/mrm.30182. Epub 2024 Jun 23.

引用本文的文献

1
In vivo 3D myocardial membrane potential mapping in humans using PET/MRI.
EJNMMI Res. 2025 Jul 26;15(1):93. doi: 10.1186/s13550-025-01287-7.

本文引用的文献

1
DeepFittingNet: A deep neural network-based approach for simplifying cardiac T and T estimation with improved robustness.
Magn Reson Med. 2023 Nov;90(5):1979-1989. doi: 10.1002/mrm.29782. Epub 2023 Jul 6.
2
Scanner-Independent MyoMapNet for Accelerated Cardiac MRI T Mapping Across Vendors and Field Strengths.
J Magn Reson Imaging. 2024 Jan;59(1):179-189. doi: 10.1002/jmri.28739. Epub 2023 Apr 13.
3
Joint spectral quantification of MR spectroscopic imaging using linear tangent space alignment-based manifold learning.
Magn Reson Med. 2023 Apr;89(4):1297-1313. doi: 10.1002/mrm.29526. Epub 2022 Nov 20.
4
Free-breathing myocardial T mapping using inversion-recovery radial FLASH and motion-resolved model-based reconstruction.
Magn Reson Med. 2023 Apr;89(4):1368-1384. doi: 10.1002/mrm.29521. Epub 2022 Nov 20.
5
3D model-based super-resolution motion-corrected cardiac T1 mapping.
Phys Med Biol. 2022 Dec 9;67(24). doi: 10.1088/1361-6560/ac9c40.
7
Manifold Learning via Linear Tangent Space Alignment (LTSA) for Accelerated Dynamic MRI With Sparse Sampling.
IEEE Trans Med Imaging. 2023 Jan;42(1):158-169. doi: 10.1109/TMI.2022.3207774. Epub 2022 Dec 29.
9
Impact of deep learning architectures on accelerated cardiac T mapping using MyoMapNet.
NMR Biomed. 2022 Nov;35(11):e4794. doi: 10.1002/nbm.4794. Epub 2022 Jul 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验