Launay Claire, Vacher Jonathan, Coen-Cagli Ruben
Dept. of Systems & Comp. Biology, AECOM, Bronx, NY, USA.
Laboratoire des Systèmes Perceptifs, DEC, ENS, PSL University, CNRS, Paris, France.
Proc Int Conf Image Proc. 2022 Oct;2022:4073-4077. doi: 10.1109/icip46576.2022.9897691. Epub 2022 Oct 18.
We propose a family of probabilistic segmentation algorithms for videos that rely on a generative model capturing static and dynamic natural image statistics. Our framework adopts flexibly regularized mixture models (FlexMM) [1], an efficient method to combine mixture distributions across different data sources. FlexMMs of Student-t distributions successfully segment static natural images, through uncertainty-based information sharing between hidden layers of CNNs. We further extend this approach to videos and exploit FlexMM to propagate segment labels across space and time. We show that temporal propagation improves temporal consistency of segmentation, reproducing qualitatively a key aspect of human perceptual grouping. Besides, Student-t distributions can capture statistics of optical flows of natural movies, which represent apparent motion in the video. Integrating these motion cues in our temporal FlexMM further enhances the segmentation of each frame of natural movies. Our probabilistic dynamic segmentation algorithms thus provide a new framework to study uncertainty in human dynamic perceptual segmentation.
我们提出了一族用于视频的概率分割算法,这些算法依赖于一个捕捉静态和动态自然图像统计信息的生成模型。我们的框架采用灵活正则化混合模型(FlexMM)[1],这是一种在不同数据源之间组合混合分布的有效方法。学生t分布的FlexMM通过基于不确定性的卷积神经网络隐藏层之间的信息共享,成功地分割静态自然图像。我们进一步将此方法扩展到视频,并利用FlexMM在空间和时间上传播分割标签。我们表明,时间传播提高了分割的时间一致性,定性地再现了人类感知分组的一个关键方面。此外,学生t分布可以捕捉自然电影光流的统计信息,光流代表视频中的表观运动。将这些运动线索整合到我们的时间FlexMM中,进一步增强了自然电影每一帧的分割。因此,我们的概率动态分割算法提供了一个新的框架来研究人类动态感知分割中的不确定性。