Suppr超能文献

自然图像层次模型中的归一化和池化。

Normalization and pooling in hierarchical models of natural images.

机构信息

Computational Neuroscience Lab, Dept. of Computer Science, University of Miami, FL 33146, United States.

Computational Neuroscience Lab, Dept. of Computer Science, University of Miami, FL 33146, United States.

出版信息

Curr Opin Neurobiol. 2019 Apr;55:65-72. doi: 10.1016/j.conb.2019.01.008. Epub 2019 Feb 18.

Abstract

Divisive normalization and subunit pooling are two canonical classes of computation that have become widely used in descriptive (what) models of visual cortical processing. Normative (why) models from natural image statistics can help constrain the form and parameters of such classes of models. We focus on recent advances in two particular directions, namely deriving richer forms of divisive normalization, and advances in learning pooling from image statistics. We discuss the incorporation of such components into hierarchical models. We consider both hierarchical unsupervised learning from image statistics, and discriminative supervised learning in deep convolutional neural networks (CNNs). We further discuss studies on the utility and extensions of the convolutional architecture, which has also been adopted by recent descriptive models. We review the recent literature and discuss the current promises and gaps of using such approaches to gain a better understanding of how cortical neurons represent and process complex visual stimuli.

摘要

分裂归一化和亚单位池化是两种广泛应用于视觉皮层处理描述性(what)模型的典型计算方法。基于自然图像统计的规范(why)模型可以帮助约束这些模型类的形式和参数。我们专注于两个特定方向的最新进展,即推导出更丰富形式的分裂归一化,以及从图像统计中学习池化的进展。我们讨论了将这些组件纳入分层模型的情况。我们同时考虑了从图像统计中进行分层无监督学习,以及在深度卷积神经网络(CNNs)中的有监督判别式学习。我们进一步讨论了卷积架构的实用性和扩展研究,最近的描述性模型也采用了这种架构。我们回顾了最近的文献,并讨论了使用这些方法来更好地理解皮质神经元如何表示和处理复杂视觉刺激的当前承诺和差距。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验