Suppr超能文献

实施一个实时评分模型以预测急诊科老年患者的跌倒风险。

Operationalizing a real-time scoring model to predict fall risk among older adults in the emergency department.

作者信息

Engstrom Collin J, Adelaine Sabrina, Liao Frank, Jacobsohn Gwen Costa, Patterson Brian W

机构信息

Department of Emergency Medicine, UW-Madison, Madison, WI, United States.

Department of Computer Science, Winona State University, Rochester, MN, United States.

出版信息

Front Digit Health. 2022 Oct 31;4:958663. doi: 10.3389/fdgth.2022.958663. eCollection 2022.

Abstract

Predictive models are increasingly being developed and implemented to improve patient care across a variety of clinical scenarios. While a body of literature exists on the development of models using existing data, less focus has been placed on practical operationalization of these models for deployment in real-time production environments. This case-study describes challenges and barriers identified and overcome in such an operationalization for a model aimed at predicting risk of outpatient falls after Emergency Department (ED) visits among older adults. Based on our experience, we provide general principles for translating an EHR-based predictive model from research and reporting environments into real-time operation.

摘要

预测模型正越来越多地被开发和应用,以改善各种临床场景下的患者护理。虽然有大量关于利用现有数据开发模型的文献,但对于将这些模型实际应用于实时生产环境的关注较少。本案例研究描述了在将一个旨在预测老年人急诊科(ED)就诊后门诊跌倒风险的模型投入实际应用过程中所发现并克服的挑战和障碍。基于我们的经验,我们提供了将基于电子健康记录(EHR)的预测模型从研究和报告环境转化为实时操作的一般原则。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9add/9671211/8e3d12329dbb/fdgth-04-958663-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验