Suppr超能文献

哨兵坠落事件致急诊科就诊(SeFallED)- 一项复杂研究的方案,包括对坠落事件后功能轨迹的长期观察、特定坠落风险因素的探索,以及患者对防坠落的看法。

Sentinel fall presenting to the emergency department (SeFallED) - protocol of a complex study including long-term observation of functional trajectories after a fall, exploration of specific fall risk factors, and patients' views on falls prevention.

机构信息

Department for Health Services Research, Geriatric Medicine, School of Medicine and Health Sciences, Carl Von Ossietzky University, Ammerländer Heerstraße 114-118, 26129, Oldenburg, Germany.

Department of Health Services Research, Junior Research Group for Rehabilitation Sciences, School of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany.

出版信息

BMC Geriatr. 2022 Jul 18;22(1):594. doi: 10.1186/s12877-022-03261-7.

Abstract

BACKGROUND

Falls are a leading cause for emergency department (ED) visits in older adults. As a fall is associated with a high risk of functional decline and further falls and many falls do not receive medical attention, the ED is ideal to initiate secondary prevention, an opportunity generally not taken. Data on trajectories to identify patients, who would profit the most form early intervention and to examine the impact of a fall event, are lacking. To tailor interventions to the individual's needs and preferences, and to address the whole scope of fall risks, we developed this longitudinal study using an extensive assessment battery including dynamic balance and aerobic fitness, but also sensor-based data. Additionally, participative research will contribute valuable qualitative data, and machine learning will be used to identify trips, slips, and falls in sensor data during daily life.

METHODS

This is a mixed-methods study consisting of four parts: (1) an observational prospective study, (2) a randomized controlled trial (RCT) to explore whether a diagnostic to measure reactive dynamic balance influences fall risk, (3) machine learning approaches and (4) a qualitative study to explore patients' and their caregivers' views. We will target a sample size of 450 adults of 60 years and older, who presented to the ED of the Klinikum Oldenburg after a fall and are not hospitalized. The participants will be followed up over 24 months (within four weeks after the ED, after 6, 12 and 24 months). We will assess functional abilities, fall risk factors, participation, quality of life, falls incidence, and physical activity using validated instruments, including sensor-data. Additionally, two thirds of the patients will undergo intensive testing in the gait laboratory and 72 participants will partake in focus group interviews.

DISCUSSION

The results of the SeFallED study will be used to identify risk factors with high predictive value for functional outcome after a sentinel fall. This will help to (1) establish a protocol adapted to the situation in the ED to identify patients at risk and (2) to initiate an appropriate care pathway, which will be developed based on the results of this study.

TRIAL REGISTRATION

DRKS (Deutsches Register für klinische Studien, DRKS00025949 ). Prospectively registered on 4 November, 2021.

摘要

背景

跌倒在老年人中是导致急诊科(ED)就诊的主要原因。由于跌倒与功能下降和进一步跌倒的风险增加有关,而且许多跌倒并未得到医疗关注,因此 ED 是启动二级预防的理想场所,但这一机会通常未被利用。目前缺乏用于识别最有可能从早期干预中受益的患者轨迹的数据,也缺乏用于检查跌倒事件影响的数据。为了根据个体的需求和偏好调整干预措施,并解决跌倒风险的整体范围,我们使用包括动态平衡和有氧健身在内的广泛评估工具包,以及基于传感器的数据,开发了这项纵向研究。此外,参与式研究将提供有价值的定性数据,机器学习将用于识别日常生活中传感器数据中的绊倒、滑倒和跌倒。

方法

这是一项混合方法研究,包括四个部分:(1)观察性前瞻性研究;(2)一项随机对照试验(RCT),旨在探索测量反应性动态平衡的诊断方法是否会影响跌倒风险;(3)机器学习方法;(4)一项定性研究,以探讨患者及其照顾者的观点。我们的目标是招募 450 名年龄在 60 岁及以上、在跌倒后到奥尔登堡 Klinikum 急诊科就诊且未住院的成年人。参与者将在 24 个月内(ED 后 4 周内、6 个月、12 个月和 24 个月时)进行随访。我们将使用经过验证的仪器(包括传感器数据)评估功能能力、跌倒风险因素、参与度、生活质量、跌倒发生率和身体活动。此外,三分之二的患者将在步态实验室进行强化测试,72 名患者将参加焦点小组访谈。

讨论

SeFallED 研究的结果将用于识别与跌倒后功能结果具有高预测价值的风险因素。这将有助于(1)制定一种适应 ED 情况的协议,以识别有风险的患者,以及(2)启动基于该研究结果的适当护理途径。

试验注册

DRKS(德国临床试验注册处,DRKS00025949)。于 2021 年 11 月 4 日前瞻性注册。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9911/9290302/dd34974669a1/12877_2022_3261_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验