Suppr超能文献

物质滥用特征的预测表达与多模型关联分析

Association of Predicted Expression and Multimodel Association Analysis of Substance Abuse Traits.

作者信息

Bost Darius M, Bizon Chris, Tilson Jeffrey L, Filer Dayne L, Gizer Ian R, Wilhelmsen Kirk C

机构信息

Department of Genetics, School of Medicine, UNC-Chapel Hill, Chapel Hill, North Carolina, USA.

Renaissance Computing Institute, Chapel Hill, North Carolina, USA.

出版信息

Complex Psychiatry. 2022 Sep;8(1-2):35-46. doi: 10.1159/000523748. Epub 2022 Feb 28.

Abstract

INTRODUCTION

Genome-wide association studies (GWAS) have played a critical role in identifying many thousands of loci associated with complex phenotypes and diseases. This has led to several translations of novel disease susceptibility genes into drug targets and care. This however has not been the case for analyses where sample sizes are small, which suffer from multiple comparisons testing. The present study examined the statistical impact of combining a burden test methodology, PrediXcan, with a multimodel meta-analysis, cross phenotype association (CPASSOC).

METHODS

The analysis was conducted on 5 addiction traits: family alcoholism, cannabis craving, alcohol, nicotine, and cannabis dependence and 10 brain tissues: anterior cingulate cortex BA24, cerebellar hemisphere, cortex, hippocampus, nucleus accumbens basal ganglia, caudate basal ganglia, cerebellum, frontal cortex BA9, hypothalamus, and putamen basal ganglia. Our sample consisted of 1,640 participants from the University of California, San Francisco (UCSF) Family Alcoholism Study. Genotypes were obtained through low pass whole genome sequencing and the use of Thunder, a linkage disequilibrium variant caller.

RESULTS

The post-PrediXcan, gene-phenotype association without aggregation resulted in 2 significant results, and . Aggregating across phenotypes resulted no significant findings. Aggregating across tissues resulted in 15 significant and 5 suggestive associations: and ; , and respectively.

DISCUSSION

Given the relatively small size of the cohort, this multimodel approach was able to find over a dozen significant associations between predicted gene expression and addiction traits. Of our findings, 8 had prior associations with similar phenotypes through investigation of the GWAS Atlas. With the onset of improved transcriptome data, this approach should increase in efficacy.

摘要

引言

全基因组关联研究(GWAS)在识别与复杂表型和疾病相关的数千个基因座方面发挥了关键作用。这已导致将多个新的疾病易感基因转化为药物靶点并应用于治疗。然而,对于样本量较小的分析情况并非如此,这类分析会受到多重比较检验的影响。本研究考察了将负担检验方法PrediXcan与多模型荟萃分析、交叉表型关联(CPASSOC)相结合的统计影响。

方法

对5种成瘾性状进行分析:家族性酒精中毒、大麻渴望、酒精、尼古丁和大麻依赖,以及10种脑组织:前扣带回皮质BA24、小脑半球、皮质、海马体、伏隔核基底神经节、尾状核基底神经节、小脑、额叶皮质BA9、下丘脑和壳核基底神经节。我们的样本包括来自加利福尼亚大学旧金山分校(UCSF)家族性酒精中毒研究的1640名参与者。通过低通量全基因组测序以及使用连锁不平衡变异调用器Thunder获得基因型。

结果

PrediXcan后,未进行汇总的基因-表型关联产生了2个显著结果,即 和 。跨表型汇总未得到显著结果。跨组织汇总产生了15个显著关联和5个提示性关联:分别为 和 ; ,以及 。

讨论

鉴于队列规模相对较小,这种多模型方法能够在预测基因表达与成瘾性状之间找到十几个显著关联。在我们的研究结果中,通过对GWAS图谱的调查,有8个与相似表型存在先前关联。随着转录组数据的改进,这种方法的效力应该会提高。

相似文献

1
Association of Predicted Expression and Multimodel Association Analysis of Substance Abuse Traits.
Complex Psychiatry. 2022 Sep;8(1-2):35-46. doi: 10.1159/000523748. Epub 2022 Feb 28.
3
Linkage analyses of cannabis dependence, craving, and withdrawal in the San Francisco family study.
Am J Med Genet B Neuropsychiatr Genet. 2010 Apr 5;153B(3):802-11. doi: 10.1002/ajmg.b.31050.
5
The University of California, San Francisco Family Alcoholism Study. I. Design, methods, and demographics.
Alcohol Clin Exp Res. 2004 Oct;28(10):1509-16. doi: 10.1097/01.alc.0000142261.32980.64.
7
Identifying genetic loci and phenomic associations of substance use traits: A multi-trait analysis of GWAS (MTAG) study.
Addiction. 2023 Oct;118(10):1942-1952. doi: 10.1111/add.16229. Epub 2023 May 22.
8
Post-GWAS analysis of six substance use traits improves the identification and functional interpretation of genetic risk loci.
Drug Alcohol Depend. 2020 Jan 1;206:107703. doi: 10.1016/j.drugalcdep.2019.107703. Epub 2019 Nov 4.
9
Pleiotropy informed adaptive association test of multiple traits using genome-wide association study summary data.
Biometrics. 2019 Dec;75(4):1076-1085. doi: 10.1111/biom.13076. Epub 2019 Aug 2.

引用本文的文献

1
Integration of estimated regional gene expression with neuroimaging and clinical phenotypes at biobank scale.
PLoS Biol. 2024 Sep 13;22(9):e3002782. doi: 10.1371/journal.pbio.3002782. eCollection 2024 Sep.

本文引用的文献

1
A large-scale genome-wide association study meta-analysis of cannabis use disorder.
Lancet Psychiatry. 2020 Dec;7(12):1032-1045. doi: 10.1016/S2215-0366(20)30339-4. Epub 2020 Oct 20.
2
Significant, replicable, and functional associations between KTN1 variants and alcohol and drug codependence.
Addict Biol. 2021 Mar;26(2):e12888. doi: 10.1111/adb.12888. Epub 2020 Mar 1.
3
5
Genetic analyses of diverse populations improves discovery for complex traits.
Nature. 2019 Jun;570(7762):514-518. doi: 10.1038/s41586-019-1310-4. Epub 2019 Jun 19.
6
Benefits and limitations of genome-wide association studies.
Nat Rev Genet. 2019 Aug;20(8):467-484. doi: 10.1038/s41576-019-0127-1.
8
Association studies of up to 1.2 million individuals yield new insights into the genetic etiology of tobacco and alcohol use.
Nat Genet. 2019 Feb;51(2):237-244. doi: 10.1038/s41588-018-0307-5. Epub 2019 Jan 14.
9
Why, When and How to Adjust Your P Values?
Cell J. 2019 Jan;20(4):604-607. doi: 10.22074/cellj.2019.5992. Epub 2018 Aug 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验