Suppr超能文献

GWAS 分析后,六种物质使用特征提高了遗传风险位点的识别和功能解释。

Post-GWAS analysis of six substance use traits improves the identification and functional interpretation of genetic risk loci.

机构信息

Department of Psychiatry, Amsterdam UMC, Amsterdam Neuroscience, University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands; QIMR Berghofer, Translational Neurogenomics group, Brisbane, Australia; Department of Economics, School of Business and Economics, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.

Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, United States; Clare Hall, University of Cambridge, Cambridge, CB3 9AL, United Kingdom.

出版信息

Drug Alcohol Depend. 2020 Jan 1;206:107703. doi: 10.1016/j.drugalcdep.2019.107703. Epub 2019 Nov 4.

Abstract

BACKGROUND

Little is known about the functional mechanisms through which genetic loci associated with substance use traits ascertain their effect. This study aims to identify and functionally annotate loci associated with substance use traits based on their role in genetic regulation of gene expression.

METHODS

We evaluated expression Quantitative Trait Loci (eQTLs) from 13 brain regions and whole blood of the Genotype-Tissue Expression (GTEx) database, and from whole blood of the Depression Genes and Networks (DGN) database. The role of single eQTLs was examined for six substance use traits: alcohol consumption (N = 537,349), cigarettes per day (CPD; N = 263,954), former vs. current smoker (N = 312,821), age of smoking initiation (N = 262,990), ever smoker (N = 632,802), and cocaine dependence (N = 4,769). Subsequently, we conducted a gene level analysis of gene expression on these substance use traits using S-PrediXcan.

RESULTS

Using an FDR-adjusted p-value <0.05 we found 2,976 novel candidate genetic loci for substance use traits, and identified genes and tissues through which these loci potentially exert their effects. Using S-PrediXcan, we identified significantly associated genes for all substance traits.

DISCUSSION

Annotating genes based on transcriptomic regulation improves the identification and functional characterization of candidate loci and genes for substance use traits.

摘要

背景

对于与物质使用特征相关的遗传位点如何通过其对基因表达的遗传调控作用来产生影响,人们知之甚少。本研究旨在根据这些遗传位点在基因表达调控中的作用,鉴定和功能注释与物质使用特征相关的遗传位点。

方法

我们评估了基因型组织表达(GTEx)数据库中 13 个大脑区域和全血以及抑郁基因和网络(DGN)数据库中全血的表达数量性状基因座(eQTLs)。我们针对六个物质使用特征(酒精摄入量[N=537349]、每天香烟数[CPD;N=263954]、以前吸烟者与当前吸烟者之比[N=312821]、开始吸烟年龄[N=262990]、曾经吸烟者[N=632802]和可卡因依赖[N=4769])评估了单个 eQTL 的作用。随后,我们使用 S-PrediXcan 对这些物质使用特征的基因表达进行了基因水平分析。

结果

使用 FDR 调整的 p 值<0.05,我们发现了 2976 个与物质使用特征相关的新候选遗传位点,并确定了这些遗传位点可能发挥作用的基因和组织。使用 S-PrediXcan,我们鉴定了所有物质特征的显著相关基因。

讨论

基于转录组调控对基因进行注释,可以提高候选基因和与物质使用特征相关的基因的鉴定和功能特征。

相似文献

6
Estimating the causal tissues for complex traits and diseases.估计复杂性状和疾病的因果组织。
Nat Genet. 2017 Dec;49(12):1676-1683. doi: 10.1038/ng.3981. Epub 2017 Oct 23.

引用本文的文献

5
The Genetically Informed Neurobiology of Addiction (GINA) model.成瘾的遗传神经生物学(GINA)模型。
Nat Rev Neurosci. 2023 Jan;24(1):40-57. doi: 10.1038/s41583-022-00656-8. Epub 2022 Nov 29.

本文引用的文献

2
Opportunities and challenges for transcriptome-wide association studies.全转录组关联研究的机遇与挑战。
Nat Genet. 2019 Apr;51(4):592-599. doi: 10.1038/s41588-019-0385-z. Epub 2019 Mar 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验