Nguyen Long H, Pham Nhat Truong, Do Van Huong, Nguyen Liu Tai, Nguyen Thanh Tin, Nguyen Hai, Nguyen Ngoc Duy, Nguyen Thanh Thi, Nguyen Sy Dzung, Bhatti Asim, Lim Chee Peng
Faculty of Information Technology, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
Division of Computational Mechatronics, Institute for Computational Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
Expert Syst Appl. 2023 Mar 1;213:119212. doi: 10.1016/j.eswa.2022.119212. Epub 2022 Nov 7.
COVID-19 is an infectious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This deadly virus has spread worldwide, leading to a global pandemic since March 2020. A recent variant of SARS-CoV-2 named Delta is intractably contagious and responsible for more than four million deaths globally. Therefore, developing an efficient self-testing service for SARS-CoV-2 at home is vital. In this study, a two-stage vision-based framework, namely Fruit-CoV, is introduced for detecting SARS-CoV-2 infections through recorded cough sounds. Specifically, audio signals are converted into Log-Mel spectrograms, and the EfficientNet-V2 network is used to extract their visual features in the first stage. In the second stage, 14 convolutional layers extracted from the large-scale Pretrained Audio Neural Networks for audio pattern recognition (PANNs) and the Wavegram-Log-Mel-CNN are employed to aggregate feature representations of the Log-Mel spectrograms and the waveform. Finally, the combined features are used to train a binary classifier. In this study, a dataset provided by the AICovidVN 115M Challenge is employed for evaluation. It includes 7,371 recorded cough sounds collected throughout Vietnam, India, and Switzerland. Experimental results indicate that the proposed model achieves an Area Under the Receiver Operating Characteristic Curve (AUC) score of 92.8% and ranks first on the final leaderboard of the AICovidVN 115M Challenge. Our code is publicly available.
新型冠状病毒肺炎(COVID-19)是一种由严重急性呼吸综合征冠状病毒2(SARS-CoV-2)引起的传染病。这种致命病毒已在全球传播,自2020年3月以来导致了全球大流行。最近一种名为德尔塔(Delta)的SARS-CoV-2变种具有极强的传染性,在全球造成了超过400万人死亡。因此,开发一种高效的居家SARS-CoV-2自我检测服务至关重要。在本研究中,引入了一种基于视觉的两阶段框架,即Fruit-CoV,用于通过记录的咳嗽声音检测SARS-CoV-2感染。具体而言,音频信号被转换为对数梅尔频谱图,在第一阶段使用高效神经网络V2(EfficientNet-V2)网络提取其视觉特征。在第二阶段,采用从用于音频模式识别的大规模预训练音频神经网络(PANNs)和波形图-对数梅尔卷积神经网络(Wavegram-Log-Mel-CNN)中提取的14个卷积层,对对数梅尔频谱图和波形的特征表示进行聚合。最后,使用组合特征训练一个二分类器。在本研究中,采用了AICovidVN 115M挑战赛提供的数据集进行评估。它包括在越南、印度和瑞士各地收集的7371条记录的咳嗽声音。实验结果表明,所提出的模型在受试者工作特征曲线下面积(AUC)得分达到92.8%,在AICovidVN 115M挑战赛的最终排行榜上排名第一。我们的代码已公开可用。
Sensors (Basel). 2024-9-24
Diagnostics (Basel). 2022-4-7
Expert Syst Appl. 2022-11-15
Annu Int Conf IEEE Eng Med Biol Soc. 2021-11
Comput Math Methods Med. 2021
Front Robot AI. 2021-5-7
Sensors (Basel). 2021-11-3
Diagnostics (Basel). 2022-9-2
IEEE Internet Things J. 2021-3-22
J Comput Sci Technol. 2022
IEEE Open J Eng Med Biol. 2020-9-24
IEEE Open J Eng Med Biol. 2020-9-29
IEEE Access. 2020-8-19