文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

水果冠状病毒:一种通过记录咳嗽声音快速检测和诊断新冠病毒感染的高效视觉框架。

Fruit-CoV: An efficient vision-based framework for speedy detection and diagnosis of SARS-CoV-2 infections through recorded cough sounds.

作者信息

Nguyen Long H, Pham Nhat Truong, Do Van Huong, Nguyen Liu Tai, Nguyen Thanh Tin, Nguyen Hai, Nguyen Ngoc Duy, Nguyen Thanh Thi, Nguyen Sy Dzung, Bhatti Asim, Lim Chee Peng

机构信息

Faculty of Information Technology, Ton Duc Thang University, Ho Chi Minh City, Vietnam.

Division of Computational Mechatronics, Institute for Computational Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam.

出版信息

Expert Syst Appl. 2023 Mar 1;213:119212. doi: 10.1016/j.eswa.2022.119212. Epub 2022 Nov 7.


DOI:10.1016/j.eswa.2022.119212
PMID:36407848
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9639421/
Abstract

COVID-19 is an infectious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This deadly virus has spread worldwide, leading to a global pandemic since March 2020. A recent variant of SARS-CoV-2 named Delta is intractably contagious and responsible for more than four million deaths globally. Therefore, developing an efficient self-testing service for SARS-CoV-2 at home is vital. In this study, a two-stage vision-based framework, namely Fruit-CoV, is introduced for detecting SARS-CoV-2 infections through recorded cough sounds. Specifically, audio signals are converted into Log-Mel spectrograms, and the EfficientNet-V2 network is used to extract their visual features in the first stage. In the second stage, 14 convolutional layers extracted from the large-scale Pretrained Audio Neural Networks for audio pattern recognition (PANNs) and the Wavegram-Log-Mel-CNN are employed to aggregate feature representations of the Log-Mel spectrograms and the waveform. Finally, the combined features are used to train a binary classifier. In this study, a dataset provided by the AICovidVN 115M Challenge is employed for evaluation. It includes 7,371 recorded cough sounds collected throughout Vietnam, India, and Switzerland. Experimental results indicate that the proposed model achieves an Area Under the Receiver Operating Characteristic Curve (AUC) score of 92.8% and ranks first on the final leaderboard of the AICovidVN 115M Challenge. Our code is publicly available.

摘要

新型冠状病毒肺炎(COVID-19)是一种由严重急性呼吸综合征冠状病毒2(SARS-CoV-2)引起的传染病。这种致命病毒已在全球传播,自2020年3月以来导致了全球大流行。最近一种名为德尔塔(Delta)的SARS-CoV-2变种具有极强的传染性,在全球造成了超过400万人死亡。因此,开发一种高效的居家SARS-CoV-2自我检测服务至关重要。在本研究中,引入了一种基于视觉的两阶段框架,即Fruit-CoV,用于通过记录的咳嗽声音检测SARS-CoV-2感染。具体而言,音频信号被转换为对数梅尔频谱图,在第一阶段使用高效神经网络V2(EfficientNet-V2)网络提取其视觉特征。在第二阶段,采用从用于音频模式识别的大规模预训练音频神经网络(PANNs)和波形图-对数梅尔卷积神经网络(Wavegram-Log-Mel-CNN)中提取的14个卷积层,对对数梅尔频谱图和波形的特征表示进行聚合。最后,使用组合特征训练一个二分类器。在本研究中,采用了AICovidVN 115M挑战赛提供的数据集进行评估。它包括在越南、印度和瑞士各地收集的7371条记录的咳嗽声音。实验结果表明,所提出的模型在受试者工作特征曲线下面积(AUC)得分达到92.8%,在AICovidVN 115M挑战赛的最终排行榜上排名第一。我们的代码已公开可用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d558/9639421/a2f4b8496ba3/gr11_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d558/9639421/140a976d6cec/ga1_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d558/9639421/95115fd78e2c/gr1_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d558/9639421/f29742d2a85e/gr2_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d558/9639421/a6f72395be8b/gr3_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d558/9639421/5aa29a1736e9/gr4_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d558/9639421/d62240787497/gr5_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d558/9639421/e138aad6ebf5/gr6_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d558/9639421/ae13790e3590/gr7_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d558/9639421/7f42aa17e74e/gr8_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d558/9639421/0ff7213f5d3e/gr9_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d558/9639421/81cbbb59c6fc/gr10_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d558/9639421/a2f4b8496ba3/gr11_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d558/9639421/140a976d6cec/ga1_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d558/9639421/95115fd78e2c/gr1_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d558/9639421/f29742d2a85e/gr2_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d558/9639421/a6f72395be8b/gr3_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d558/9639421/5aa29a1736e9/gr4_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d558/9639421/d62240787497/gr5_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d558/9639421/e138aad6ebf5/gr6_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d558/9639421/ae13790e3590/gr7_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d558/9639421/7f42aa17e74e/gr8_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d558/9639421/0ff7213f5d3e/gr9_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d558/9639421/81cbbb59c6fc/gr10_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d558/9639421/a2f4b8496ba3/gr11_lrg.jpg

相似文献

[1]
Fruit-CoV: An efficient vision-based framework for speedy detection and diagnosis of SARS-CoV-2 infections through recorded cough sounds.

Expert Syst Appl. 2023-3-1

[2]
Fused Audio Instance and Representation for Respiratory Disease Detection.

Sensors (Basel). 2024-9-24

[3]
QUCoughScope: An Intelligent Application to Detect COVID-19 Patients Using Cough and Breath Sounds.

Diagnostics (Basel). 2022-4-7

[4]
Design and development of hybrid optimization enabled deep learning model for COVID-19 detection with comparative analysis with DCNN, BIAT-GRU, XGBoost.

Comput Biol Med. 2022-11

[5]
Deep learning based cough detection camera using enhanced features.

Expert Syst Appl. 2022-11-15

[6]
A deep learning approach for detecting drill bit failures from a small sound dataset.

Sci Rep. 2022-6-10

[7]
Transformer-based CNNs: Mining Temporal Context Information for Multi-sound COVID-19 Diagnosis.

Annu Int Conf IEEE Eng Med Biol Soc. 2021-11

[8]
Deep Learning Algorithm for COVID-19 Classification Using Chest X-Ray Images.

Comput Math Methods Med. 2021

[9]
Cough Recognition Based on Mel-Spectrogram and Convolutional Neural Network.

Front Robot AI. 2021-5-7

[10]
Data Collection, Modeling, and Classification for Gunshot and Gunshot-like Audio Events: A Case Study.

Sensors (Basel). 2021-11-3

引用本文的文献

[1]
Cough duration, energy and sound frequency in COVID-19 patients: the spectral analysis results.

BMC Pulm Med. 2025-8-1

[2]
EfficientNet-Based System for Detecting EGFR-Mutant Status and Predicting Prognosis of Tyrosine Kinase Inhibitors in Patients with NSCLC.

J Imaging Inform Med. 2024-6

[3]
Challenges and Opportunities of Deep Learning for Cough-Based COVID-19 Diagnosis: A Scoping Review.

Diagnostics (Basel). 2022-9-2

本文引用的文献

[1]
Computer Audition for Fighting the SARS-CoV-2 Corona Crisis-Introducing the Multitask Speech Corpus for COVID-19.

IEEE Internet Things J. 2021-3-22

[2]
Diagnosis of COVID-19 Pneumonia via a Novel Deep Learning Architecture.

J Comput Sci Technol. 2022

[3]
SARS-CoV-2 Detection From Voice.

IEEE Open J Eng Med Biol. 2020-9-24

[4]
Exploring the Use of Artificial Intelligence Techniques to Detect the Presence of Coronavirus Covid-19 Through Speech and Voice Analysis.

IEEE Access. 2021-4-26

[5]
COVID-19 Artificial Intelligence Diagnosis Using Only Cough Recordings.

IEEE Open J Eng Med Biol. 2020-9-29

[6]
Artificial Intelligence (AI) and Big Data for Coronavirus (COVID-19) Pandemic: A Survey on the State-of-the-Arts.

IEEE Access. 2020-7-15

[7]
DeepH-DTA: Deep Learning for Predicting Drug-Target Interactions: A Case Study of COVID-19 Drug Repurposing.

IEEE Access. 2020-9-15

[8]
Novel Coronavirus Cough Database: NoCoCoDa.

IEEE Access. 2020-8-19

[9]
COVID-19 and Computer Audition: An Overview on What Speech & Sound Analysis Could Contribute in the SARS-CoV-2 Corona Crisis.

Front Digit Health. 2021-3-29

[10]
Tracking social media during the COVID-19 pandemic: The case study of lockdown in New York State.

Expert Syst Appl. 2022-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索