School of Health Management, China Medical University, Shenyang, Liaoning, 110122, China.
Department of Thoracic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, China.
J Imaging Inform Med. 2024 Jun;37(3):1086-1099. doi: 10.1007/s10278-024-01022-z. Epub 2024 Feb 15.
We aimed to develop and validate a deep learning-based system using pre-therapy computed tomography (CT) images to detect epidermal growth factor receptor (EGFR)-mutant status in patients with non-small cell lung cancer (NSCLC) and predict the prognosis of advanced-stage patients with EGFR mutations treated with EGFR tyrosine kinase inhibitors (TKI). This retrospective, multicenter study included 485 patients with NSCLC from four hospitals. Of them, 339 patients from three centers were included in the training dataset to develop an EfficientNetV2-L-based model (EME) for predicting EGFR-mutant status, and the remaining patients were assigned to an independent test dataset. EME semantic features were extracted to construct an EME-prognostic model to stratify the prognosis of EGFR-mutant NSCLC patients receiving EGFR-TKI. A comparison of EME and radiomics was conducted. Additionally, we included patients from The Cancer Genome Atlas lung adenocarcinoma dataset with both CT images and RNA sequencing data to explore the biological associations between EME score and EGFR-related biological processes. EME obtained an area under the curve (AUC) of 0.907 (95% CI 0.840-0.926) on the test dataset, superior to the radiomics model (P = 0.007). The EME and radiomics fusion model showed better (AUC, 0.941) but not significantly increased performance (P = 0.895) compared with EME. In prognostic stratification, the EME-prognostic model achieved the best performance (C-index, 0.711). Moreover, the EME-prognostic score showed strong associations with biological pathways related to EGFR expression and EGFR-TKI efficacy. EME demonstrated a non-invasive and biologically interpretable approach to predict EGFR status, stratify survival prognosis, and correlate biological pathways in patients with NSCLC.
我们旨在开发和验证一种基于深度学习的系统,该系统使用治疗前计算机断层扫描(CT)图像来检测非小细胞肺癌(NSCLC)患者中的表皮生长因子受体(EGFR)突变状态,并预测 EGFR 突变患者接受 EGFR 酪氨酸激酶抑制剂(TKI)治疗的晚期患者的预后。这项回顾性、多中心研究纳入了来自四家医院的 485 名 NSCLC 患者。其中,来自三个中心的 339 名患者被纳入训练数据集,以开发一种基于 EfficientNetV2-L 的模型(EME)来预测 EGFR 突变状态,其余患者被分配到独立的测试数据集。提取 EME 的语义特征来构建 EME 预后模型,以分层 EGFR 突变 NSCLC 患者接受 EGFR-TKI 治疗的预后。对 EME 和放射组学进行了比较。此外,我们还纳入了来自癌症基因组图谱肺腺癌数据集的患者,这些患者同时具有 CT 图像和 RNA 测序数据,以探索 EME 评分与 EGFR 相关生物学过程之间的生物学关联。EME 在测试数据集上的 AUC 为 0.907(95%CI 0.840-0.926),优于放射组学模型(P=0.007)。EME 和放射组学融合模型显示出更好的性能(AUC,0.941),但与 EME 相比,差异无统计学意义(P=0.895)。在预后分层方面,EME 预后模型的表现最佳(C 指数,0.711)。此外,EME 预后评分与 EGFR 表达和 EGFR-TKI 疗效相关的生物学途径有很强的关联。EME 为预测 EGFR 状态、分层生存预后以及与 NSCLC 患者的生物学途径相关联提供了一种非侵入性和可解释的方法。
Cochrane Database Syst Rev. 2016-5-25
Cancer Cytopathol. 2023-4
Front Pharmacol. 2022-6-27