文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于 EfficientNet 的系统,用于检测 NSCLC 患者的 EGFR 突变状态和预测酪氨酸激酶抑制剂的预后。

EfficientNet-Based System for Detecting EGFR-Mutant Status and Predicting Prognosis of Tyrosine Kinase Inhibitors in Patients with NSCLC.

机构信息

School of Health Management, China Medical University, Shenyang, Liaoning, 110122, China.

Department of Thoracic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, China.

出版信息

J Imaging Inform Med. 2024 Jun;37(3):1086-1099. doi: 10.1007/s10278-024-01022-z. Epub 2024 Feb 15.


DOI:10.1007/s10278-024-01022-z
PMID:38361006
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11169294/
Abstract

We aimed to develop and validate a deep learning-based system using pre-therapy computed tomography (CT) images to detect epidermal growth factor receptor (EGFR)-mutant status in patients with non-small cell lung cancer (NSCLC) and predict the prognosis of advanced-stage patients with EGFR mutations treated with EGFR tyrosine kinase inhibitors (TKI). This retrospective, multicenter study included 485 patients with NSCLC from four hospitals. Of them, 339 patients from three centers were included in the training dataset to develop an EfficientNetV2-L-based model (EME) for predicting EGFR-mutant status, and the remaining patients were assigned to an independent test dataset. EME semantic features were extracted to construct an EME-prognostic model to stratify the prognosis of EGFR-mutant NSCLC patients receiving EGFR-TKI. A comparison of EME and radiomics was conducted. Additionally, we included patients from The Cancer Genome Atlas lung adenocarcinoma dataset with both CT images and RNA sequencing data to explore the biological associations between EME score and EGFR-related biological processes. EME obtained an area under the curve (AUC) of 0.907 (95% CI 0.840-0.926) on the test dataset, superior to the radiomics model (P = 0.007). The EME and radiomics fusion model showed better (AUC, 0.941) but not significantly increased performance (P = 0.895) compared with EME. In prognostic stratification, the EME-prognostic model achieved the best performance (C-index, 0.711). Moreover, the EME-prognostic score showed strong associations with biological pathways related to EGFR expression and EGFR-TKI efficacy. EME demonstrated a non-invasive and biologically interpretable approach to predict EGFR status, stratify survival prognosis, and correlate biological pathways in patients with NSCLC.

摘要

我们旨在开发和验证一种基于深度学习的系统,该系统使用治疗前计算机断层扫描(CT)图像来检测非小细胞肺癌(NSCLC)患者中的表皮生长因子受体(EGFR)突变状态,并预测 EGFR 突变患者接受 EGFR 酪氨酸激酶抑制剂(TKI)治疗的晚期患者的预后。这项回顾性、多中心研究纳入了来自四家医院的 485 名 NSCLC 患者。其中,来自三个中心的 339 名患者被纳入训练数据集,以开发一种基于 EfficientNetV2-L 的模型(EME)来预测 EGFR 突变状态,其余患者被分配到独立的测试数据集。提取 EME 的语义特征来构建 EME 预后模型,以分层 EGFR 突变 NSCLC 患者接受 EGFR-TKI 治疗的预后。对 EME 和放射组学进行了比较。此外,我们还纳入了来自癌症基因组图谱肺腺癌数据集的患者,这些患者同时具有 CT 图像和 RNA 测序数据,以探索 EME 评分与 EGFR 相关生物学过程之间的生物学关联。EME 在测试数据集上的 AUC 为 0.907(95%CI 0.840-0.926),优于放射组学模型(P=0.007)。EME 和放射组学融合模型显示出更好的性能(AUC,0.941),但与 EME 相比,差异无统计学意义(P=0.895)。在预后分层方面,EME 预后模型的表现最佳(C 指数,0.711)。此外,EME 预后评分与 EGFR 表达和 EGFR-TKI 疗效相关的生物学途径有很强的关联。EME 为预测 EGFR 状态、分层生存预后以及与 NSCLC 患者的生物学途径相关联提供了一种非侵入性和可解释的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f8b/11169294/c9d9706db9df/10278_2024_1022_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f8b/11169294/c997b8e5dbc0/10278_2024_1022_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f8b/11169294/11af9a0fcdb6/10278_2024_1022_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f8b/11169294/2ae0e9e7d01c/10278_2024_1022_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f8b/11169294/0de870741430/10278_2024_1022_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f8b/11169294/7ba265ee1cd1/10278_2024_1022_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f8b/11169294/c9d9706db9df/10278_2024_1022_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f8b/11169294/c997b8e5dbc0/10278_2024_1022_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f8b/11169294/11af9a0fcdb6/10278_2024_1022_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f8b/11169294/2ae0e9e7d01c/10278_2024_1022_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f8b/11169294/0de870741430/10278_2024_1022_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f8b/11169294/7ba265ee1cd1/10278_2024_1022_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f8b/11169294/c9d9706db9df/10278_2024_1022_Fig6_HTML.jpg

相似文献

[1]
EfficientNet-Based System for Detecting EGFR-Mutant Status and Predicting Prognosis of Tyrosine Kinase Inhibitors in Patients with NSCLC.

J Imaging Inform Med. 2024-6

[2]
Adjuvant epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) for the treatment of people with resected stage I to III non-small-cell lung cancer and EGFR mutation.

Cochrane Database Syst Rev. 2025-5-27

[3]
Epidermal growth factor receptor tyrosine kinase (EGFR-TK) mutation testing in adults with locally advanced or metastatic non-small cell lung cancer: a systematic review and cost-effectiveness analysis.

Health Technol Assess. 2014-5

[4]
First-line treatment of advanced epidermal growth factor receptor (EGFR) mutation positive non-squamous non-small cell lung cancer.

Cochrane Database Syst Rev. 2016-5-25

[5]
Non-invasive identification of TKI-resistant NSCLC: a multi-model AI approach for predicting EGFR/TP53 co-mutations.

BMC Pulm Med. 2025-7-10

[6]
A Radiomics-clinical Nomogram based on CT Radiomics to Predict Acquired T790M Mutation Status in Non-small Cell Lung Cancer Patients.

Curr Med Imaging. 2024-3-22

[7]
Chemotherapy and programmed cell death protein 1/programmed death-ligand 1 inhibitor combinations for tyrosine kinase inhibitor-resistant, epidermal growth factor receptor-mutated non-small-cell lung cancer: a meta-analysis.

ESMO Open. 2024-9

[8]
Traditional Chinese medicinal herbs combined with epidermal growth factor receptor tyrosine kinase inhibitor for advanced non-small cell lung cancer: a systematic review and meta-analysis.

J Integr Med. 2014-7

[9]
Genomic profiling and prognostic factors of leptomeningeal metastasis in EGFR-mutant NSCLC after resistant to third-generation EGFR-tyrosine kinase inhibitors.

Lung Cancer. 2025-7

[10]
Assessment of somatic k-RAS mutations as a mechanism associated with resistance to EGFR-targeted agents: a systematic review and meta-analysis of studies in advanced non-small-cell lung cancer and metastatic colorectal cancer.

Lancet Oncol. 2008-10

本文引用的文献

[1]
Development and validation of an insulin resistance model for a population without diabetes mellitus and its clinical implication: a prospective cohort study.

EClinicalMedicine. 2023-4-4

[2]
Application of deep learning as an ancillary diagnostic tool for thyroid FNA cytology.

Cancer Cytopathol. 2023-4

[3]
Fruit-CoV: An efficient vision-based framework for speedy detection and diagnosis of SARS-CoV-2 infections through recorded cough sounds.

Expert Syst Appl. 2023-3-1

[4]
Can quantitative peritumoral CT radiomics features predict the prognosis of patients with non-small cell lung cancer? A systematic review.

Eur Radiol. 2023-3

[5]
Development and validation of a deep learning model for survival prognosis of transcatheter arterial chemoembolization in patients with intermediate-stage hepatocellular carcinoma.

Eur J Radiol. 2022-11

[6]
Intratumoral and peritumoral radiomics nomograms for the preoperative prediction of lymphovascular invasion and overall survival in non-small cell lung cancer.

Eur Radiol. 2023-2

[7]
Prediction of EGFR Mutation Status in Non-Small Cell Lung Cancer Based on Ensemble Learning.

Front Pharmacol. 2022-6-27

[8]
A deep learning-based system for survival benefit prediction of tyrosine kinase inhibitors and immune checkpoint inhibitors in stage IV non-small cell lung cancer patients: A multicenter, prognostic study.

EClinicalMedicine. 2022-7-1

[9]
PET/CT Radiomic Features: A Potential Biomarker for EGFR Mutation Status and Survival Outcome Prediction in NSCLC Patients Treated With TKIs.

Front Oncol. 2022-6-21

[10]
PET/CT Based EGFR Mutation Status Classification of NSCLC Using Deep Learning Features and Radiomics Features.

Front Pharmacol. 2022-4-27

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索