Bode Stefan, Schubert Elektra, Hogendoorn Hinze, Feuerriegel Daniel
Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, VIC, Australia.
Front Neurosci. 2022 Nov 3;16:989589. doi: 10.3389/fnins.2022.989589. eCollection 2022.
Multivariate classification analysis for event-related potential (ERP) data is a powerful tool for predicting cognitive variables. However, classification is often restricted to categorical variables and under-utilises continuous data, such as response times, response force, or subjective ratings. An alternative approach is support vector regression (SVR), which uses single-trial data to predict continuous variables of interest. In this tutorial-style paper, we demonstrate how SVR is implemented in the Decision Decoding Toolbox (DDTBOX). To illustrate in more detail how results depend on specific toolbox settings and data features, we report results from two simulation studies resembling real EEG data, and one real ERP-data set, in which we predicted continuous variables across a range of analysis parameters. Across all studies, we demonstrate that SVR is effective for analysis windows ranging from 2 to 100 ms, and relatively unaffected by temporal averaging. Prediction is still successful when only a small number of channels encode true information, and the analysis is robust to temporal jittering of the relevant information in the signal. Our results show that SVR as implemented in DDTBOX can reliably predict continuous, more nuanced variables, which may not be well-captured by classification analysis. In sum, we demonstrate that linear SVR is a powerful tool for the investigation of single-trial EEG data in relation to continuous variables, and we provide practical guidance for users.
对事件相关电位(ERP)数据进行多变量分类分析是预测认知变量的有力工具。然而,分类通常仅限于分类变量,且未充分利用连续数据,如反应时间、反应力或主观评分。另一种方法是支持向量回归(SVR),它使用单次试验数据来预测感兴趣的连续变量。在这篇教程式论文中,我们展示了如何在决策解码工具箱(DDTBOX)中实现SVR。为了更详细地说明结果如何依赖于特定的工具箱设置和数据特征,我们报告了两项类似于真实脑电图数据的模拟研究以及一项真实ERP数据集的结果,在这些研究中我们在一系列分析参数范围内预测了连续变量。在所有研究中,我们证明SVR对于2到100毫秒的分析窗口是有效的,并且相对不受时间平均的影响。当只有少数通道编码真实信息时,预测仍然成功,并且该分析对信号中相关信息的时间抖动具有鲁棒性。我们的结果表明,DDTBOX中实现的SVR能够可靠地预测连续的、更细微的变量,而分类分析可能无法很好地捕捉这些变量。总之,我们证明线性SVR是研究与连续变量相关的单次试验脑电图数据的有力工具,并为用户提供了实用指南。