Suppr超能文献

经支气管径向探头超声引导外周肺部病变的非诊断性活检:超声影像学的放射组学在预测恶性肿瘤方面的附加价值。

Nondiagnostic, radial-probe endobronchial ultrasound-guided biopsy for peripheral lung lesions: The added value of radiomics from ultrasound imaging for predicting malignancy.

机构信息

Department of Digital Health, SAIHST, Sungkyunkwan University, Seoul, South Korea.

Hongseong-gun Public Health Center, Hongseong-gun, South Korea.

出版信息

Thorac Cancer. 2023 Jan;14(2):177-185. doi: 10.1111/1759-7714.14730. Epub 2022 Nov 21.

Abstract

OBJECTIVES

This study investigated whether radiomic features extracted from radial-probe endobronchial ultrasound (radial EBUS) images can assist in decision-making for subsequent clinical management in cases with indeterminate pathologic results.

METHODS

A total of 494 patients who underwent radial EBUS biopsy for lung nodules between January 2017 and December 2018 were allocated to our training set. For the validation set, 229 patients with radial EBUS biopsy results from January 2019 to April 2020 were used. A multivariate logistic regression analysis was used for feature selection and prediction modeling.

RESULTS

In the training set, 157 (67 benign and 90 malignant) of 212 patients pathologically diagnosed as indeterminate were analyzed. In the validation set, 213 patients were diagnosed as indeterminate, and 158 patients (63 benign and 95 malignant) were included in the analysis. The performance of the radiomics-added model, which considered satellite nodules, linear arc, shape, patency of vessels and bronchi, echogenicity, spiculation, C-reactive protein, and minimum histogram, was 0.929 for the training set and 0.877 for the validation set, whereas the performance of the model without radiomics was 0.910 and 0.891, respectively.

CONCLUSION

Although the next diagnostic step for indeterminate lung biopsy results remains controversial, integrating various factors, including radiomic features from radial EBUS, might facilitate decision-making for subsequent clinical management.

摘要

目的

本研究旨在探讨从径向探头支气管内超声(radial EBUS)图像中提取的放射组学特征是否有助于在病理结果不确定的情况下,为后续临床管理提供决策依据。

方法

共纳入 2017 年 1 月至 2018 年 12 月期间因肺结节行径向 EBUS 活检的 494 例患者,将其分为训练集。对于验证集,纳入 2019 年 1 月至 2020 年 4 月期间因径向 EBUS 活检结果不确定而行再次活检的 229 例患者。采用多变量逻辑回归分析进行特征选择和预测建模。

结果

在训练集中,对 212 例病理诊断不确定的患者(67 例良性和 90 例恶性)中的 157 例(67 例良性和 90 例恶性)进行了分析。在验证集中,213 例患者诊断为不确定,其中 213 例患者诊断为不确定,158 例患者(63 例良性和 95 例恶性)纳入分析。考虑卫星结节、线性弧形、形状、血管和支气管通畅性、回声、毛刺、C 反应蛋白和最小直方图的放射组学附加模型的性能在训练集和验证集分别为 0.929 和 0.877,而不包含放射组学特征的模型的性能在训练集和验证集分别为 0.910 和 0.891。

结论

尽管对于不确定的肺活检结果,下一步的诊断步骤仍存在争议,但整合包括径向 EBUS 放射组学特征在内的各种因素,可能有助于为后续临床管理提供决策依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a650/9834694/c9b060645a1d/TCA-14-177-g005.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验