Department of Pathology and Laboratory Medicine, Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY, USA.
Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
EMBO Rep. 2023 Jan 9;24(1):e54689. doi: 10.15252/embr.202254689. Epub 2022 Nov 21.
Disruption of sphingolipid homeostasis and signaling has been implicated in diabetes, cancer, cardiometabolic, and neurodegenerative disorders. Yet, mechanisms governing cellular sensing and regulation of sphingolipid homeostasis remain largely unknown. In yeast, serine palmitoyltransferase, catalyzing the first and rate-limiting step of sphingolipid de novo biosynthesis, is negatively regulated by Orm1 and 2. Lowering sphingolipids triggers Orms phosphorylation, upregulation of serine palmitoyltransferase activity and sphingolipid de novo biosynthesis. However, mammalian orthologs ORMDLs lack the N-terminus hosting the phosphosites. Thus, which sphingolipid(s) are sensed by the cells, and mechanisms of homeostasis remain largely unknown. Here, we identify sphingosine-1-phosphate (S1P) as key sphingolipid sensed by cells via S1PRs to maintain homeostasis. The increase in S1P-S1PR signaling stabilizes ORMDLs, restraining SPT activity. Mechanistically, the hydroxylation of ORMDLs at Pro137 allows a constitutive degradation of ORMDLs via ubiquitin-proteasome pathway, preserving SPT activity. Disrupting S1PR/ORMDL axis results in ceramide accrual, mitochondrial dysfunction, impaired signal transduction, all underlying endothelial dysfunction, early event in the onset of cardio- and cerebrovascular diseases. Our discovery may provide the molecular basis for therapeutic intervention restoring sphingolipid homeostasis.
鞘脂代谢平衡和信号的破坏与糖尿病、癌症、心血管代谢和神经退行性疾病有关。然而,细胞感知和调节鞘脂代谢平衡的机制在很大程度上仍然未知。在酵母中,催化鞘脂从头生物合成第一步和限速步骤的丝氨酸棕榈酰转移酶受到 Orm1 和 2 的负调控。鞘脂水平降低会触发 Orm 磷酸化,上调丝氨酸棕榈酰转移酶活性和鞘脂从头生物合成。然而,哺乳动物的 ORMDL 缺乏含有磷酸化位点的 N 端。因此,细胞感知到的鞘脂(s)以及代谢平衡的机制在很大程度上仍然未知。在这里,我们确定了 1-磷酸鞘氨醇(S1P)是细胞通过 S1PR 感知以维持平衡的关键鞘脂。S1P-S1PR 信号的增加稳定了 ORMDLs,抑制了 SPT 活性。从机制上讲,ORMDLs 在 Pro137 处的羟化允许通过泛素-蛋白酶体途径对 ORMDLs 进行组成性降解,从而保持 SPT 活性。破坏 S1PR/ORMDL 轴会导致神经酰胺积累、线粒体功能障碍、信号转导受损,所有这些都会导致内皮功能障碍,这是心血管和脑血管疾病发病的早期事件。我们的发现可能为恢复鞘脂代谢平衡的治疗干预提供分子基础。