Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand.
Biomedical Science Research Unit, College of Medicine and Public Health, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand.
Anal Chem. 2022 Dec 6;94(48):16692-16700. doi: 10.1021/acs.analchem.2c03120. Epub 2022 Nov 21.
Nanoscale imprinting significantly increases the specific surface area and recognition capabilities of a molecularly imprinted polymer by improving accessibility to analytes, binding kinetics, and template removal. Herein, we present a novel synthetic route for a dual molecularly imprinted polymer (dual-MIP) of the carcinogen oxidative stress biomarkers 3-nitrotyrosine (3-NT) and 4-nitroquinolin-N-oxide (4-NQO) as coatings on graphene quantum-dot capped gold nanoparticles (GQDs-AuNPs). The dual-MIP was successfully coated on the GQDs-AuNPs core via a (3-mercaptopropyl) trimethoxysilane (MPTMS) linkage and copolymerization with the 3-aminopropyltriethoxysilane (APTMS) functional monomer. In addition, we fabricated a facile and compact three-dimensional electrochemical paper-based analytical device (3D-ePAD) for the simultaneous determination of the dual biomarkers using a GQDs-AuNPs@dual-MIP-modified graphene electrode (GQDs-AuNPs@dual-MIP/SPGE). The developed dual-MIP device provides greatly enhanced electrochemical signal amplification due to the improved electrode-specific surface area, electrocatalytic activity, and the inclusion of large numbers of dual-imprinted sites for 3-NT and 4-NQO detection. Quantitative analysis used square wave voltammetry, with an oxidation current appearing at -0.10 V for 4-NQO and +0.78 V for 3-NT. The dual-MIP sensor revealed excellent linear dynamic ranges of 0.01 to 500 μM for 3-NT and 0.005 to 250 μM for 4-NQO, with detection limits in nanomolar levels for both biomarkers. Furthermore, the dual-MIP sensor for the simultaneous determination of 3-NT and 4-NQO provides high accuracy and precision, with no evidence of interference from urine, serum, or whole blood samples.
纳米压印技术通过提高分析物的可及性、结合动力学和模板去除效率,显著提高了分子印迹聚合物的比表面积和识别能力。在此,我们提出了一种新型的双印迹分子聚合物(dual-MIP)合成方法,该聚合物以氧化应激生物标志物 3-硝基酪氨酸(3-NT)和 4-硝基喹啉-N-氧化物(4-NQO)为模板,以石墨烯量子点封端的金纳米粒子(GQDs-AuNPs)为载体。通过(3-巯丙基)三甲氧基硅烷(MPTMS)连接和 3-氨丙基三乙氧基硅烷(APTMS)功能单体共聚,成功地将双印迹分子聚合物(dual-MIP)涂覆在 GQDs-AuNPs 核心上。此外,我们还制备了一种简单紧凑的三维电化学纸基分析器件(3D-ePAD),用于使用 GQDs-AuNPs@dual-MIP 修饰的石墨烯电极(GQDs-AuNPs@dual-MIP/SPGE)同时测定两种生物标志物。由于改进了电极比表面积、电催化活性以及包含大量双印迹位点,该开发的 dual-MIP 器件提供了极大的电化学信号放大作用,用于检测 3-NT 和 4-NQO。定量分析采用方波伏安法,4-NQO 的氧化电流出现在-0.10 V,3-NT 的氧化电流出现在+0.78 V。dual-MIP 传感器对 3-NT 的线性动态范围为 0.01 至 500 μM,对 4-NQO 的线性动态范围为 0.005 至 250 μM,两种生物标志物的检测限均达到纳摩尔水平。此外,dual-MIP 传感器用于同时测定 3-NT 和 4-NQO,具有高精度和高重现性,尿液、血清或全血样本无干扰。