Suppr超能文献

SCGG:一种基于深度结构条件的图生成模型。

SCGG: A deep structure-conditioned graph generative model.

机构信息

Department of Computer Engineering, Sharif University of Technology, Tehran, Iran.

出版信息

PLoS One. 2022 Nov 21;17(11):e0277887. doi: 10.1371/journal.pone.0277887. eCollection 2022.

Abstract

Deep learning-based graph generation approaches have remarkable capacities for graph data modeling, allowing them to solve a wide range of real-world problems. Making these methods able to consider different conditions during the generation procedure even increases their effectiveness by empowering them to generate new graph samples that meet the desired criteria. This paper presents a conditional deep graph generation method called SCGG that considers a particular type of structural conditions. Specifically, our proposed SCGG model takes an initial subgraph and autoregressively generates new nodes and their corresponding edges on top of the given conditioning substructure. The architecture of SCGG consists of a graph representation learning network and an autoregressive generative model, which is trained end-to-end. More precisely, the graph representation learning network is designed to compute continuous representations for each node in a graph, which are not only affected by the features of adjacent nodes, but also by the ones of farther nodes. This network is primarily responsible for providing the generation procedure with the structural condition, while the autoregressive generative model mainly maintains the generation history. Using this model, we can address graph completion, a rampant and inherently difficult problem of recovering missing nodes and their associated edges of partially observed graphs. The computational complexity of the SCGG method is shown to be linear in the number of graph nodes. Experimental results on both synthetic and real-world datasets demonstrate the superiority of our method compared with state-of-the-art baselines.

摘要

基于深度学习的图生成方法在图数据建模方面具有显著的能力,能够解决广泛的现实世界问题。使这些方法能够在生成过程中考虑不同的条件,甚至通过赋予它们生成满足所需标准的新图样本的能力来提高它们的效率。本文提出了一种称为 SCGG 的条件深度图生成方法,它考虑了一种特定类型的结构条件。具体来说,我们提出的 SCGG 模型采用初始子图,并在给定的条件子结构上自动回归生成新的节点及其相应的边。SCGG 的架构由图表示学习网络和自动回归生成模型组成,它们是端到端训练的。更准确地说,图表示学习网络旨在为图中的每个节点计算连续表示,这些表示不仅受到相邻节点特征的影响,还受到更远节点特征的影响。该网络主要负责为生成过程提供结构条件,而自动回归生成模型主要维持生成历史。使用该模型,我们可以解决图完成问题,这是一个普遍存在且固有的困难问题,即恢复部分观察到的图中缺失节点及其相关边。SCGG 方法的计算复杂度被证明是图节点数的线性函数。在合成和真实数据集上的实验结果表明,与最先进的基线相比,我们的方法具有优越性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d20e/9678307/94da0a074f31/pone.0277887.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验