Suppr超能文献

脑网络诊断中基于图生成、聚类和分类的协同学习。

Collaborative learning of graph generation, clustering and classification for brain networks diagnosis.

机构信息

College of Computer Science and Engineering, Northeastern University, Shenyang, China; Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang, China.

College of Computer Science and Engineering, Northeastern University, Shenyang, China; Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang, China.

出版信息

Comput Methods Programs Biomed. 2022 Jun;219:106772. doi: 10.1016/j.cmpb.2022.106772. Epub 2022 Mar 23.

Abstract

PURPOSE

Accurate diagnosis of autism spectrum disorder (ASD) plays a key role in improving the condition and quality of life for patients. In this study, we mainly focus on ASD diagnosis with functional brain networks (FBNs). The major challenge for brain networks modeling is the high dimensional connectivity in brain networks and limited number of subjects, which hinders the classification capability of graph convolutional networks (GCNs).

METHOD

To alleviate the influence of the limited data and high dimensional connectivity, we introduce a unified three-stage graph learning framework for brain network classification, involving multi-graph clustering, graph generation and graph classification. The framework combining Graph Generation, Clustering and Classification Networks (GraphCGC-Net) enhances the critical connections by multi-graph clustering (MGC) with a supervision scheme, and generates realistic brain networks by simultaneously preserving the global consistent distribution and local topology properties.

RESULTS

To demonstrate the effectiveness of our approach, we evaluate the performance of the proposed method on the Autism Brain Imaging Data Exchange (ABIDE) dataset and conduct extensive experiments on the ASD classification problem. Our proposed method achieves an average accuracy of 70.45% and an AUC of 72.76% on ABIDE. Compared with the traditional GCN model, the proposed GraphCGC-Net obtains 9.3%, and 10.64% improvement in terms of accuracy and AUC metrics, respectively.

CONCLUSION

The comprehensive experiments demonstrate that our GraphCGC-Net is effective for graph classification in brain disorders diagnosis. Moreover, we find that MGC can generate biologically meaningful subnetworks, which is highly consistent with the previous neuroimaging-derived biomarker evidence of ASD. More importantly, the promising results suggest that applying generative adversarial networks (GANs) in brain networks to improve the classification performance is worth further investigation.

摘要

目的

自闭症谱系障碍(ASD)的准确诊断对于改善患者的病情和生活质量起着关键作用。在本研究中,我们主要专注于使用功能脑网络(FBNs)进行 ASD 诊断。脑网络建模的主要挑战是脑网络中的高维连通性和有限的样本数量,这阻碍了图卷积网络(GCNs)的分类能力。

方法

为了减轻有限数据和高维连通性的影响,我们引入了一个统一的三阶段脑网络分类图学习框架,包括多图聚类、图生成和图分类。该框架结合了图生成、聚类和分类网络(GraphCGC-Net),通过多图聚类(MGC)结合监督方案增强关键连接,并通过同时保留全局一致分布和局部拓扑特性来生成真实的脑网络。

结果

为了证明我们方法的有效性,我们在自闭症脑成像数据交换(ABIDE)数据集上评估了该方法的性能,并在 ASD 分类问题上进行了广泛的实验。我们提出的方法在 ABIDE 上的平均准确率为 70.45%,AUC 为 72.76%。与传统的 GCN 模型相比,所提出的 GraphCGC-Net 在准确率和 AUC 指标上分别提高了 9.3%和 10.64%。

结论

综合实验表明,我们的 GraphCGC-Net 对脑疾病诊断中的图分类是有效的。此外,我们发现 MGC 可以生成具有生物学意义的子网,这与之前关于 ASD 的神经影像学衍生生物标志物证据高度一致。更重要的是,有希望的结果表明,在脑网络中应用生成对抗网络(GANs)来提高分类性能值得进一步研究。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验