National Deuteration Facility, ANSTO, Lucas Heights, NSW, Australia.
National Deuteration Facility, ANSTO, Lucas Heights, NSW, Australia.
Methods Enzymol. 2022;677:85-126. doi: 10.1016/bs.mie.2022.08.030. Epub 2022 Oct 20.
Small angle neutron scattering is a powerful complementary technique in structural biology. It generally requires, or benefits from, deuteration to achieve its unique potentials. Molecular deuteration has become a mature expertise, with deuteration facilities located worldwide to support access to the technique for a wide breadth of structural biology and life sciences. The sorts of problems well answered by small angle scattering and deuteration involve large (>10Å) scale flexible movements, and this approach is best used where high-resolution methods (crystallography, NMR, cryo-EM) leave questions unanswered. This chapter introduces deuteration, reviewing biological deuteration of proteins, lipids and sterols, and then steps through the ever-expanding range of deuterated molecules being produced by chemical synthesis and enabling sophisticated experiments using physiologically relevant lipids. Case studies of recent successful use of deuteration may provide illustrative examples for strategies for future experiments. We discuss issues of nomenclature for synthesised molecules of novel labeling and make recommendations for their naming. We reflect on our experiences, with cost associated with achieving an arbitrary deuteration level, and on the benefits of experimental co-design by user scientist, deuteration scientist, and neutron scattering scientist working together. Although methods for biological and chemical deuteration are published in the public domain, we recommend that the best method to deuterate is to engage with a deuteration facility.
小角中子散射是结构生物学中一种强大的互补技术。它通常需要氘化或受益于氘化来实现其独特的潜力。分子氘化已成为一项成熟的专业技术,在世界各地都设有氘化设施,以支持广泛的结构生物学和生命科学领域对该技术的应用。小角散射和氘化能够很好地解决的问题涉及到大(>10Å)规模的柔性运动,这种方法最适用于高分辨率方法(晶体学、NMR、低温电子显微镜)无法解决问题的情况。本章介绍氘化,回顾蛋白质、脂质和固醇的生物氘化,然后逐步介绍通过化学合成产生的越来越多的氘化分子,这些分子能够实现具有生理相关性的脂质的复杂实验。最近成功使用氘化的案例研究可以为未来实验的策略提供示例。我们讨论了新型标记合成分子的命名法问题,并提出了它们的命名建议。我们反思了我们的经验,包括实现任意氘化水平的相关成本,以及用户科学家、氘化科学家和中子散射科学家共同进行实验设计的好处。尽管生物和化学氘化的方法已在公共领域发表,但我们建议最好的氘化方法是与氘化设施合作。