College of Horticulture, China Agricultural University, Beijing 100193, P.R. China.
Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), the Ministry of Agriculture and Rural Affairs, Beijing 100193, P.R. China.
Plant Physiol. 2023 Feb 12;191(2):1305-1323. doi: 10.1093/plphys/kiac519.
Nitrogen is critical for plant growth and development. With the increase of nitrogen fertilizer application, nitrogen use efficiency decreases, resulting in wasted resources. In apple (Malus domestica) rootstocks, the potential molecular mechanism for improving nitrogen uptake efficiency to alleviate low-nitrogen stress remains unclear. We utilized multi-omics approaches to investigate the mechanism of nitrogen uptake in two apple rootstocks with different responses to nitrogen stress, Malus hupehensis and Malus sieversii. Under low-nitrogen stress, Malus sieversii showed higher efficiency in nitrogen uptake. Multi-omics analysis revealed substantial differences in the expression of genes involved in flavonoid and lignin synthesis pathways between the two materials, which were related to the corresponding metabolites. We discovered that basic helix-loop-helix 130 (bHLH130) transcription factor was highly negatively associated with the flavonoid biosynthetic pathway. bHLH130 may directly bind to the chalcone synthase gene (CHS) promoter and inhibit its expression. Overexpressing CHS increased flavonoid accumulation and nitrogen uptake. Inhibiting bHLH130 increased flavonoid biosynthesis while decreasing lignin accumulation, thus improving nitrogen uptake efficiency. These findings revealed the molecular mechanism by which bHLH130 regulates flavonoid and lignin biosyntheses in apple rootstocks under low-nitrogen stress.
氮是植物生长和发育的关键。随着氮肥施用量的增加,氮的利用效率降低,导致资源浪费。在苹果(Malus domestica)砧木中,提高氮吸收效率以缓解低氮胁迫的潜在分子机制尚不清楚。我们利用多组学方法研究了在对氮胁迫有不同反应的两种苹果砧木(Malus hupehensis 和 Malus sieversii)中氮吸收的机制。在低氮胁迫下,Malus sieversii 在氮吸收效率方面表现出更高的效率。多组学分析揭示了两种材料之间参与类黄酮和木质素合成途径的基因表达存在显著差异,这与相应的代谢物有关。我们发现,基本螺旋-环-螺旋 130(bHLH130)转录因子与类黄酮生物合成途径高度负相关。bHLH130 可能直接与查尔酮合酶基因(CHS)启动子结合并抑制其表达。过表达 CHS 增加了类黄酮的积累和氮的吸收。抑制 bHLH130 增加了类黄酮的生物合成,同时减少了木质素的积累,从而提高了氮的吸收效率。这些发现揭示了 bHLH130 在苹果砧木低氮胁迫下调节类黄酮和木质素生物合成的分子机制。