Suppr超能文献

深度学习肺结节检测系统的开发与性能评估。

Development and performance evaluation of a deep learning lung nodule detection system.

机构信息

Department of Radiology, Faculty of Medicine, Kyorin University, 6-20-2, Shinkawa, Mitaka-shi, Tokyo, Japan.

Imaging Technology Center, ICT Strategy Division, Fujifilm Corporation, 2-26-30, Nishi-Azabu, Minato-ku, Tokyo, Japan.

出版信息

BMC Med Imaging. 2022 Nov 22;22(1):203. doi: 10.1186/s12880-022-00938-8.

Abstract

BACKGROUND

Lung cancer is the leading cause of cancer-related deaths throughout the world. Chest computed tomography (CT) is now widely used in the screening and diagnosis of lung cancer due to its effectiveness. Radiologists must identify each small nodule shadow from 3D volume images, which is very burdensome and often results in missed nodules. To address these challenges, we developed a computer-aided detection (CAD) system that automatically detects lung nodules in CT images.

METHODS

A total of 1997 chest CT scans were collected for algorithm development. The algorithm was designed using deep learning technology. In addition to evaluating detection performance on various public datasets, its robustness to changes in radiation dose was assessed by a phantom study. To investigate the clinical usefulness of the CAD system, a reader study was conducted with 10 doctors, including inexperienced and expert readers. This study investigated whether the use of the CAD as a second reader could prevent nodular lesions in lungs that require follow-up examinations from being overlooked. Analysis was performed using the Jackknife Free-Response Receiver-Operating Characteristic (JAFROC).

RESULTS

The CAD system achieved sensitivity of 0.98/0.96 at 3.1/7.25 false positives per case on two public datasets. Sensitivity did not change within the range of practical doses for a study using a phantom. A second reader study showed that the use of this system significantly improved the detection ability of nodules that could be picked up clinically (p = 0.026).

CONCLUSIONS

We developed a deep learning-based CAD system that is robust to imaging conditions. Using this system as a second reader increased detection performance.

摘要

背景

肺癌是全球癌症相关死亡的主要原因。由于其有效性,胸部计算机断层扫描(CT)现在广泛用于肺癌的筛查和诊断。放射科医生必须从 3D 容积图像中识别每个小结节阴影,这非常繁琐,并且经常导致结节漏诊。为了解决这些挑战,我们开发了一种计算机辅助检测(CAD)系统,该系统可自动检测 CT 图像中的肺结节。

方法

共收集了 1997 例胸部 CT 扫描用于算法开发。该算法使用深度学习技术设计。除了在各种公共数据集上评估检测性能外,还通过体模研究评估了其对辐射剂量变化的稳健性。为了研究 CAD 系统的临床实用性,对 10 名医生(包括经验不足的医生和专家医生)进行了读者研究。该研究调查了使用 CAD 作为第二读者是否可以防止需要随访检查的肺部结节病变被忽略。使用 Jackknife 自由响应接收器操作特征(JAFROC)进行分析。

结果

CAD 系统在两个公共数据集上的假阳性率分别为 3.1/7.25 个病例时,灵敏度为 0.98/0.96。在使用体模进行的研究中,灵敏度在实际剂量范围内没有变化。第二读者研究表明,使用该系统可显著提高临床上可检测到的结节的检测能力(p=0.026)。

结论

我们开发了一种对成像条件具有鲁棒性的基于深度学习的 CAD 系统。使用该系统作为第二读者可提高检测性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97e9/9682774/95daf82aae8d/12880_2022_938_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验