Department of Internal Medicine, University Hospital, 12 de Octubre, Av Córdoba Km 5,400, 28041, Madrid, Spain.
Infectious Diseases Unit, University Hospital Lucus Augusti, Lugo, Spain.
Respir Res. 2022 Nov 24;23(1):323. doi: 10.1186/s12931-022-02245-w.
Influenza viruses cause seasonal epidemics worldwide with a significant morbimortality burden. Clinical spectrum of Influenza is wide, being respiratory failure (RF) one of its most severe complications. This study aims to elaborate a clinical prediction rule of RF in hospitalized Influenza patients.
A prospective cohort study was conducted during two consecutive Influenza seasons (December 2016-March 2017 and December 2017-April 2018) including hospitalized adults with confirmed A or B Influenza infection. A prediction rule was derived using logistic regression and recursive partitioning, followed by internal cross-validation. External validation was performed on a retrospective cohort in a different hospital between December 2018 and May 2019.
Overall, 707 patients were included in the derivation cohort and 285 in the validation cohort. RF rate was 6.8% and 11.6%, respectively. Chronic obstructive pulmonary disease, immunosuppression, radiological abnormalities, respiratory rate, lymphopenia, lactate dehydrogenase and C-reactive protein at admission were associated with RF. A four category-grouped seven point-score was derived including radiological abnormalities, lymphopenia, respiratory rate and lactate dehydrogenase. Final model area under the curve was 0.796 (0.714-0.877) in the derivation cohort and 0.773 (0.687-0.859) in the validation cohort (p < 0.001 in both cases). The predicted model showed an adequate fit with the observed results (Fisher's test p > 0.43).
we present a simple, discriminating, well-calibrated rule for an early prediction of the development of RF in hospitalized Influenza patients, with proper performance in an external validation cohort. This tool can be helpful in patient's stratification during seasonal Influenza epidemics.
流感病毒在全球范围内引起季节性流行,造成重大的发病和死亡负担。流感的临床谱广泛,其中呼吸衰竭(RF)是其最严重的并发症之一。本研究旨在制定一个用于预测住院流感患者发生 RF 的临床预测规则。
本前瞻性队列研究在两个连续的流感季节(2016 年 12 月至 2017 年 3 月和 2017 年 12 月至 2018 年 4 月)进行,纳入了确诊为 A 型或 B 型流感感染的住院成年患者。使用逻辑回归和递归分区法推导预测规则,然后进行内部交叉验证。在 2018 年 12 月至 2019 年 5 月期间,在另一家医院进行的回顾性队列中进行了外部验证。
总体而言,纳入了 707 例患者进行推导队列研究,285 例患者进行验证队列研究。RF 的发生率分别为 6.8%和 11.6%。慢性阻塞性肺疾病、免疫抑制、影像学异常、呼吸频率、淋巴细胞减少、乳酸脱氢酶和 C 反应蛋白在入院时与 RF 相关。根据入院时的影像学异常、淋巴细胞减少、呼吸频率和乳酸脱氢酶,建立了一个四分类七分值的预测模型。推导队列的最终模型曲线下面积为 0.796(0.714-0.877),验证队列为 0.773(0.687-0.859)(两个队列均 P<0.001)。预测模型与观察结果拟合良好(Fisher 检验 P>0.43)。
我们提出了一个简单、有鉴别力、校准良好的规则,用于预测住院流感患者 RF 的发生,在外部验证队列中表现良好。该工具可用于季节性流感流行期间对患者进行分层。