Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.
Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, California, USA.
Pharmacoepidemiol Drug Saf. 2023 Apr;32(4):468-474. doi: 10.1002/pds.5574. Epub 2022 Nov 30.
Perinatal epidemiology studies using healthcare utilization databases are often restricted to live births, largely due to the lack of established algorithms to identify non-live births. The study objective was to develop and validate claims-based algorithms for the ascertainment of non-live births.
Using the Mass General Brigham Research Patient Data Registry 2000-2014, we assembled a cohort of women enrolled in Medicaid with a non-live birth. Based on ≥1 inpatient or ≥2 outpatient diagnosis/procedure codes, we identified and randomly sampled 100 potential stillbirth, spontaneous abortion, and termination cases each. For the secondary definitions, we excluded cases with codes for other pregnancy outcomes within ±5 days of the outcome of interest and relaxed the definitions for spontaneous abortion and termination by allowing cases with one outpatient diagnosis only. Cases were adjudicated based on medical chart review. We estimated the positive predictive value (PPV) for each outcome.
The PPV was 71.0% (95% CI, 61.1-79.6) for stillbirth; 79.0% (69.7-86.5) for spontaneous abortion, and 93.0% (86.1-97.1) for termination. When excluding cases with adjacent codes for other pregnancy outcomes and further relaxing the definition, the PPV increased to 80.6% (69.5-88.9) for stillbirth, 86.6% (80.5-91.3) for spontaneous abortion and 94.9% (91.1-97.4) for termination. The PPV for the composite outcome using the relaxed definition was 94.4% (92.3-96.1).
Our findings suggest non-live birth outcomes can be identified in a valid manner in epidemiological studies based on healthcare utilization databases.
利用医疗保健利用数据库进行围产期流行病学研究通常仅限于活产,主要是因为缺乏确定非活产的既定算法。本研究的目的是开发和验证基于索赔的非活产确定算法。
使用 2000-2014 年马萨诸塞州综合医院 Brigham 研究患者数据登记处,我们组建了一个参加医疗补助计划的非活产女性队列。基于≥1 次住院或≥2 次门诊诊断/程序代码,我们分别随机选择了 100 例潜在的死胎、自然流产和终止妊娠病例。对于次要定义,我们排除了在感兴趣的结果±5 天内有其他妊娠结局代码的病例,并通过允许只有一个门诊诊断来放宽自然流产和终止妊娠的定义。根据病历审查对病例进行裁决。我们估计了每个结局的阳性预测值(PPV)。
死产的 PPV 为 71.0%(95%CI,61.1-79.6);自然流产的 PPV 为 79.0%(69.7-86.5);终止妊娠的 PPV 为 93.0%(86.1-97.1)。当排除相邻代码为其他妊娠结局的病例并进一步放宽定义时,死产的 PPV 增加至 80.6%(69.5-88.9),自然流产的 PPV 增加至 86.6%(80.5-91.3),终止妊娠的 PPV 增加至 94.9%(91.1-97.4)。使用放宽定义的复合结局的 PPV 为 94.4%(92.3-96.1)。
我们的研究结果表明,基于医疗保健利用数据库,在流行病学研究中可以以有效的方式确定非活产结局。