Suppr超能文献

铁和剪切应力对生物膜发育及介观结构的影响——一个案例研究

Impact of Fe and Shear Stress on the Development and Mesoscopic Structure of Biofilms-A Case Study.

作者信息

Gierl Luisa, Horn Harald, Wagner Michael

机构信息

Water Chemistry and Water Technology, Engler-Bunte-Institut, Karlsruhe Institute of Technology, Engler-Bunte-Ring 9a, 76131 Karlsruhe, Germany.

German Technical and Scientific Association for Gas and Water (DVGW) Research Site at Karlsruhe Institute of Technology, Water Chemistry and Water Technology, Engler-Bunte-Ring 9a, 76131 Karlsruhe, Germany.

出版信息

Microorganisms. 2022 Nov 11;10(11):2234. doi: 10.3390/microorganisms10112234.

Abstract

Bivalent cations are known to affect the structural and mechanical properties of biofilms. In order to reveal the impact of Fe ions within the cultivation medium on biofilm development, structure and stability, biofilms were cultivated in mini-fluidic flow cells. Two different Fe inflow concentrations (0.25 and 2.5 mg/L, respectively) and wall shear stress levels (0.05 and 0.27 Pa, respectively) were tested. Mesoscopic biofilm structure was determined daily in situ and non-invasively by means of optical coherence tomography. A set of ten structural parameters was used to quantify biofilm structure, its development and change. The study focused on characterizing biofilm structure and development at the mesoscale (mm-range). Therefore, biofilm replicates ( = 10) were cultivated and analyzed. Three hypotheses were defined in order to estimate the effect of Fe inflow concentration and/or wall shear stress on biofilm development and structure, respectively. It was not the intention to investigate and describe the underlying mechanisms of iron incorporation as this would require a different set of tools applied at microscopic levels as well as the use of, i.e., omic approaches. Fe addition influenced biofilm development (e.g., biofilm accumulation) and structure markedly. Experiments revealed the accumulation of FeO(OH) within the biofilm matrix and a positive correlation of Fe inflow concentration and biofilm accumulation. In more detail, independent of the wall shear stress applied during cultivation, biofilms grew approximately four times thicker at 2.5 mg Fe/L (44.8 µmol/L; high inflow concentration) compared to the low Fe inflow concentration of 0.25 mg Fe/L (4.48 µmol/L). This finding was statistically verified (Scheirer-Ray-Hare test, ANOVA) and hints at a higher stability of biofilms (e.g., elevated cohesive and adhesive strength) when grown at elevated Fe inflow concentrations.

摘要

已知二价阳离子会影响生物膜的结构和力学性能。为了揭示培养基中的铁离子对生物膜形成、结构和稳定性的影响,在微流控流动池中培养生物膜。测试了两种不同的铁流入浓度(分别为0.25和2.5 mg/L)和壁面剪应力水平(分别为0.05和0.27 Pa)。通过光学相干断层扫描每天原位且非侵入性地确定介观生物膜结构。使用一组十个结构参数来量化生物膜结构、其形成和变化。该研究的重点是在介观尺度(毫米范围)表征生物膜结构和形成。因此,培养并分析了生物膜复制品(n = 10)。定义了三个假设,以分别估计铁流入浓度和/或壁面剪应力对生物膜形成和结构的影响。本研究无意探究和描述铁掺入的潜在机制,因为这需要在微观层面应用不同的工具集以及使用例如组学方法。添加铁显著影响生物膜的形成(例如生物膜积累)和结构。实验揭示了氢氧化铁(FeO(OH))在生物膜基质中的积累以及铁流入浓度与生物膜积累之间的正相关关系。更详细地说,与0.25 mg Fe/L(4.48 µmol/L)的低铁流入浓度相比,在2.5 mg Fe/L(44.8 µmol/L;高铁流入浓度)下培养时,无论培养过程中施加的壁面剪应力如何,生物膜生长厚度大约是其四倍。这一发现经过了统计学验证(Scheirer-Ray-Hare检验,方差分析),表明在高铁流入浓度下生长时生物膜具有更高的稳定性(例如更高的内聚强度和粘附强度)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a3c/9699539/8522b7e5492b/microorganisms-10-02234-g001.jpg

相似文献

1
Impact of Fe and Shear Stress on the Development and Mesoscopic Structure of Biofilms-A Case Study.
Microorganisms. 2022 Nov 11;10(11):2234. doi: 10.3390/microorganisms10112234.
2
Time-resolved biofilm deformation measurements using optical coherence tomography.
Biotechnol Bioeng. 2015 Sep;112(9):1893-905. doi: 10.1002/bit.25590. Epub 2015 May 12.
3
Iron Homeostasis in Bacillus subtilis Requires Siderophore Production and Biofilm Formation.
Appl Environ Microbiol. 2019 Jan 23;85(3). doi: 10.1128/AEM.02439-18. Print 2019 Feb 1.
4
Selected metal ions protect Bacillus subtilis biofilms from erosion.
Metallomics. 2014 Aug;6(8):1441-50. doi: 10.1039/c4mt00049h.
6
Effect of microfluidic channel geometry on Bacillus subtilis biofilm formation.
Biomed Microdevices. 2022 Jan 24;24(1):11. doi: 10.1007/s10544-022-00612-4.
8
Importance of the biofilm matrix for the erosion stability of NCIB 3610 biofilms.
RSC Adv. 2019 Apr 11;9(20):11521-11529. doi: 10.1039/c9ra01955c. eCollection 2019 Apr 9.
9
A Dual-Species Biofilm with Emergent Mechanical and Protective Properties.
J Bacteriol. 2019 Aug 22;201(18). doi: 10.1128/JB.00670-18. Print 2019 Sep 15.
10
Determination of mechanical properties of biofilms by modelling the deformation measured using optical coherence tomography.
Water Res. 2018 Nov 15;145:588-598. doi: 10.1016/j.watres.2018.08.070. Epub 2018 Sep 1.

引用本文的文献

1
The role of fluid friction in streamer formation and biofilm growth.
NPJ Biofilms Microbiomes. 2025 Jan 15;11(1):17. doi: 10.1038/s41522-024-00633-2.

本文引用的文献

4
Evaluation of productive biofilms for continuous lactic acid production.
Biotechnol Bioeng. 2019 Oct;116(10):2687-2697. doi: 10.1002/bit.27080. Epub 2019 Jun 29.
5
Biofilm systems as tools in biotechnological production.
Appl Microbiol Biotechnol. 2019 Jul;103(13):5095-5103. doi: 10.1007/s00253-019-09869-x. Epub 2019 May 11.
6
Iron Homeostasis in Bacillus subtilis Requires Siderophore Production and Biofilm Formation.
Appl Environ Microbiol. 2019 Jan 23;85(3). doi: 10.1128/AEM.02439-18. Print 2019 Feb 1.
7
Interdependence between iron acquisition and biofilm formation in Pseudomonas aeruginosa.
J Microbiol. 2018 Jul;56(7):449-457. doi: 10.1007/s12275-018-8114-3. Epub 2018 Jun 14.
8
Enhanced Biofilm Formation by Ferrous and Ferric Iron Through Oxidative Stress in .
Front Microbiol. 2018 Jun 6;9:1204. doi: 10.3389/fmicb.2018.01204. eCollection 2018.
10
Increased methane production in cyanobacteria and methanogenic microbe co-cultures.
Bioresour Technol. 2017 Nov;243:686-692. doi: 10.1016/j.biortech.2017.06.126. Epub 2017 Jun 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验