School of Medicine, Queen's University, Kingston, Ontario, Canada.
Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.
Eur J Ophthalmol. 2023 Sep;33(5):1816-1833. doi: 10.1177/11206721221140948. Epub 2022 Nov 25.
This review focuses on utility of artificial intelligence (AI) in analysis of biofluid markers in glaucoma. We detail the accuracy and validity of AI in the exploration of biomarkers to provide insight into glaucoma pathogenesis.
A comprehensive search was conducted across five electronic databases including Embase, Medline, Cochrane Central Register of Controlled Trials, Cochrane Database of Systematic Reviews, and Web of Science. Studies pertaining to biofluid marker analysis using AI or bioinformatics in glaucoma were included. Identified studies were critically appraised and assessed for risk of bias using the Joanna Briggs Institute Critical Appraisal tools.
A total of 10,258 studies were screened and 39 studies met the inclusion criteria, including 23 cross-sectional studies (59%), nine prospective cohort studies (23%), six retrospective cohort studies (15%), and one case-control study (3%). Primary open angle glaucoma (POAG) was the most commonly studied subtype (55% of included studies). Twenty-four studies examined disease characteristics, 10 explored treatment decisions, and 5 provided diagnostic clarification. While studies examined at entire metabolomic or proteomic profiles to determine changes in POAG, there was heterogeneity in the data with over 175 unique, differentially expressed biomarkers reported. Discriminant analysis and artificial neural network predictive models displayed strong differentiating ability between glaucoma patients and controls, although these tools were untested in a clinical context.
The use of AI models could inform glaucoma diagnosis with high sensitivity and specificity. While insight into differentially expressed biomarkers is valuable in pathogenic exploration, no clear pathogenic mechanism in glaucoma has emerged.
本综述重点探讨人工智能(AI)在分析青光眼生物体液标志物中的应用。我们详细介绍了 AI 在探索生物标志物方面的准确性和有效性,以深入了解青光眼的发病机制。
通过对 Embase、Medline、Cochrane 中心对照试验注册库、Cochrane 系统评价数据库和 Web of Science 这五个电子数据库进行全面检索,纳入使用 AI 或生物信息学分析青光眼生物体液标志物的研究。对确定的研究进行批判性评价,并使用 Joanna Briggs 研究所批判性评价工具评估偏倚风险。
共筛选出 10258 项研究,其中 39 项研究符合纳入标准,包括 23 项横断面研究(59%)、9 项前瞻性队列研究(23%)、6 项回顾性队列研究(15%)和 1 项病例对照研究(3%)。原发性开角型青光眼(POAG)是最常研究的亚型(55%的纳入研究)。24 项研究探讨了疾病特征,10 项研究探讨了治疗决策,5 项研究提供了诊断澄清。虽然这些研究检测了整个代谢组学或蛋白质组学图谱以确定 POAG 的变化,但数据存在异质性,报道了超过 175 种独特的、差异表达的生物标志物。判别分析和人工神经网络预测模型显示出在区分青光眼患者和对照组方面具有很强的区分能力,尽管这些工具尚未在临床环境中进行测试。
AI 模型的使用可以实现高灵敏度和特异性的青光眼诊断。虽然对差异表达的生物标志物的深入了解对发病机制的探索有价值,但青光眼并没有出现明确的发病机制。