Suppr超能文献

通过 CRISPR 捕获技术解析基因座特异性染色质相互作用

Dissecting Locus-Specific Chromatin Interactions by CRISPR CAPTURE.

机构信息

Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.

Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center, and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.

出版信息

Methods Mol Biol. 2023;2599:69-97. doi: 10.1007/978-1-0716-2847-8_7.

Abstract

The spatiotemporal control of tissue-specific gene expression is coordinated by cis-regulatory elements (CREs) and associated trans-acting factors. Despite major advances in genome-wide annotation of candidate CREs, the in situ regulatory composition of the vast majority of CREs remain unknown. To address this challenge, we developed the CRISPR affinity purification in situ of regulatory elements (CAPTURE) toolbox that employs an in vivo biotinylated nuclease-deficient Cas9 (dCas9) protein and programmable single-guide RNAs (sgRNAs) to identify CRE-associated macromolecular complexes and chromatin looping. In this chapter, we provide a detailed protocol for implementing the latest iteration of the CRISPR-based CAPTURE methods to interrogate the molecular composition of locus-specific chromatin complexes and configuration in a mammalian genome.

摘要

组织特异性基因表达的时空调控是由顺式调控元件(CREs)和相关的反式作用因子协调的。尽管在候选 CREs 的全基因组注释方面取得了重大进展,但绝大多数 CREs 的原位调控组成仍然未知。为了解决这一挑战,我们开发了 CRISPR 亲和纯化原位调控元件(CAPTURE)工具包,该工具包使用体内生物素化的核酸酶缺陷 Cas9(dCas9)蛋白和可编程的单指导 RNA(sgRNA)来鉴定与 CRE 相关的大分子复合物和染色质环。在本章中,我们提供了一个详细的实施基于 CRISPR 的 CAPTURE 方法的最新迭代的方案,以研究哺乳动物基因组中特定基因座染色质复合物的分子组成和结构。

相似文献

1
Dissecting Locus-Specific Chromatin Interactions by CRISPR CAPTURE.
Methods Mol Biol. 2023;2599:69-97. doi: 10.1007/978-1-0716-2847-8_7.
2
CAPTURE: In Situ Analysis of Chromatin Composition of Endogenous Genomic Loci by Biotinylated dCas9.
Curr Protoc Mol Biol. 2018 Jul;123(1):e64. doi: 10.1002/cpmb.64. Epub 2018 Jun 19.
3
In Situ Capture of Chromatin Interactions by Biotinylated dCas9.
Cell. 2017 Aug 24;170(5):1028-1043.e19. doi: 10.1016/j.cell.2017.08.003.
5
Model-based analysis of chromatin interactions from dCas9-Based CAPTURE-3C-seq.
PLoS One. 2020 Jul 31;15(7):e0236666. doi: 10.1371/journal.pone.0236666. eCollection 2020.
6
A saturating mutagenesis CRISPR-Cas9-mediated functional genomic screen identifies and regulatory elements of in murine ESCs.
J Biol Chem. 2020 Nov 20;295(47):15797-15809. doi: 10.1074/jbc.RA120.013772. Epub 2020 Sep 29.
7
CLOuD9: CRISPR-Cas9-Mediated Technique for Reversible Manipulation of Chromatin Architecture.
Methods Mol Biol. 2022;2532:293-309. doi: 10.1007/978-1-0716-2497-5_14.
8
In Vivo Genome-Wide CRISPR Activation Screening Identifies Functionally Important Long Noncoding RNAs in Hepatocellular Carcinoma.
Cell Mol Gastroenterol Hepatol. 2022;14(5):1053-1076. doi: 10.1016/j.jcmgh.2022.07.017. Epub 2022 Aug 6.
9
Local chromatin interactions contribute to expression of the fibrinogen gene cluster.
J Thromb Haemost. 2018 Oct;16(10):2070-2082. doi: 10.1111/jth.14248. Epub 2018 Aug 23.
10
Discovery of proteins associated with a predefined genomic locus via dCas9-APEX-mediated proximity labeling.
Nat Methods. 2018 Jun;15(6):437-439. doi: 10.1038/s41592-018-0007-1. Epub 2018 May 7.

引用本文的文献

1
Regulation and function of transposable elements in cancer genomes.
Cell Mol Life Sci. 2024 Mar 31;81(1):157. doi: 10.1007/s00018-024-05195-2.

本文引用的文献

1
Inner nuclear protein Matrin-3 coordinates cell differentiation by stabilizing chromatin architecture.
Nat Commun. 2021 Oct 29;12(1):6241. doi: 10.1038/s41467-021-26574-4.
2
MAnorm2 for quantitatively comparing groups of ChIP-seq samples.
Genome Res. 2021 Jan;31(1):131-145. doi: 10.1101/gr.262675.120. Epub 2020 Nov 18.
3
Noncoding Variants Connect Enhancer Dysregulation with Nuclear Receptor Signaling in Hematopoietic Malignancies.
Cancer Discov. 2020 May;10(5):724-745. doi: 10.1158/2159-8290.CD-19-1128. Epub 2020 Mar 18.
5
4C-seq from beginning to end: A detailed protocol for sample preparation and data analysis.
Methods. 2020 Jan 1;170:17-32. doi: 10.1016/j.ymeth.2019.07.014. Epub 2019 Jul 26.
6
WashU Epigenome Browser update 2019.
Nucleic Acids Res. 2019 Jul 2;47(W1):W158-W165. doi: 10.1093/nar/gkz348.
7
Reversible Disruption of Specific Transcription Factor-DNA Interactions Using CRISPR/Cas9.
Mol Cell. 2019 May 2;74(3):622-633.e4. doi: 10.1016/j.molcel.2019.04.011.
8
CAPTURE: In Situ Analysis of Chromatin Composition of Endogenous Genomic Loci by Biotinylated dCas9.
Curr Protoc Mol Biol. 2018 Jul;123(1):e64. doi: 10.1002/cpmb.64. Epub 2018 Jun 19.
9
CRISPOR: intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens.
Nucleic Acids Res. 2018 Jul 2;46(W1):W242-W245. doi: 10.1093/nar/gky354.
10
Technique: CRISPR CAPTURE for multi-omic probing of genomic loci.
Nat Rev Genet. 2017 Nov;18(11):641. doi: 10.1038/nrg.2017.79. Epub 2017 Oct 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验