Suppr超能文献

基于深度学习的青光眼筛查:利用眼底摄影中的视网膜神经纤维层区域厚度

Deep Learning-Based Glaucoma Screening Using Regional RNFL Thickness in Fundus Photography.

作者信息

Yang Hyunmo, Ahn Yujin, Askaruly Sanzhar, You Joon S, Kim Sang Woo, Jung Woonggyu

机构信息

Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.

Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA.

出版信息

Diagnostics (Basel). 2022 Nov 21;12(11):2894. doi: 10.3390/diagnostics12112894.

Abstract

Since glaucoma is a progressive and irreversible optic neuropathy, accurate screening and/or early diagnosis is critical in preventing permanent vision loss. Recently, optical coherence tomography (OCT) has become an accurate diagnostic tool to observe and extract the thickness of the retinal nerve fiber layer (RNFL), which closely reflects the nerve damage caused by glaucoma. However, OCT is less accessible than fundus photography due to higher cost and expertise required for operation. Though widely used, fundus photography is effective for early glaucoma detection only when used by experts with extensive training. Here, we introduce a deep learning-based approach to predict the RNFL thickness around optic disc regions in fundus photography for glaucoma screening. The proposed deep learning model is based on a convolutional neural network (CNN) and utilizes images taken with fundus photography and with RNFL thickness measured with OCT for model training and validation. Using a dataset acquired from normal tension glaucoma (NTG) patients, the trained model can estimate RNFL thicknesses in 12 optic disc regions from fundus photos. Using intuitive thickness labels to identify localized damage of the optic nerve head and then estimating regional RNFL thicknesses from fundus images, we determine that screening for glaucoma could achieve 92% sensitivity and 86.9% specificity. Receiver operating characteristic (ROC) analysis results for specificity of 80% demonstrate that use of the localized mean over superior and inferior regions reaches 90.7% sensitivity, whereas 71.2% sensitivity is reached using the global RNFL thicknesses for specificity at 80%. This demonstrates that the new approach of using regional RNFL thicknesses in fundus images holds good promise as a potential screening technique for early stage of glaucoma.

摘要

由于青光眼是一种进行性且不可逆的视神经病变,准确的筛查和/或早期诊断对于预防永久性视力丧失至关重要。最近,光学相干断层扫描(OCT)已成为一种准确的诊断工具,用于观察和提取视网膜神经纤维层(RNFL)的厚度,该厚度能密切反映青光眼所导致的神经损伤。然而,由于操作成本较高且需要专业知识,OCT的普及程度不如眼底摄影。尽管眼底摄影被广泛使用,但只有经过广泛培训的专家使用时,它才对早期青光眼检测有效。在此,我们介绍一种基于深度学习的方法,用于预测眼底摄影中视盘区域周围的RNFL厚度,以进行青光眼筛查。所提出的深度学习模型基于卷积神经网络(CNN),并利用眼底摄影拍摄的图像以及用OCT测量的RNFL厚度进行模型训练和验证。使用从正常眼压性青光眼(NTG)患者获取的数据集,训练后的模型可以从眼底照片估计12个视盘区域的RNFL厚度。通过使用直观的厚度标签来识别视神经乳头的局部损伤,然后从眼底图像估计区域RNFL厚度,我们确定青光眼筛查的灵敏度可达92%,特异度可达86.9%。特异度为80%时的受试者工作特征(ROC)分析结果表明,使用上下区域的局部平均值时灵敏度达到90.7%,而特异度为80%时使用全局RNFL厚度的灵敏度为71.2%。这表明在眼底图像中使用区域RNFL厚度的新方法作为青光眼早期潜在筛查技术具有良好前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48b5/9689347/0ebf6f661768/diagnostics-12-02894-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验