Suppr超能文献

一种从眼底图像量化神经视网膜边缘损失的深度学习算法。

A Deep Learning Algorithm to Quantify Neuroretinal Rim Loss From Optic Disc Photographs.

机构信息

Vision, Imaging and Performance (VIP) Laboratory, Duke Eye Center and Department of Ophthalmology, Duke University, Durham, North Carolina, USA.

Vision, Imaging and Performance (VIP) Laboratory, Duke Eye Center and Department of Ophthalmology, Duke University, Durham, North Carolina, USA.

出版信息

Am J Ophthalmol. 2019 May;201:9-18. doi: 10.1016/j.ajo.2019.01.011. Epub 2019 Jan 26.

Abstract

PURPOSE

To train a deep learning (DL) algorithm that quantifies glaucomatous neuroretinal damage on fundus photographs using the minimum rim width relative to Bruch membrane opening (BMO-MRW) from spectral-domain optical coherence tomography (SDOCT).

DESIGN

Cross-sectional study.

METHODS

A total of 9282 pairs of optic disc photographs and SDOCT optic nerve head scans from 927 eyes of 490 subjects were randomly divided into the validation plus training (80%) and test sets (20%). A DL convolutional neural network was trained to predict the SDOCT BMO-MRW global and sector values when evaluating optic disc photographs. The predictions of the DL network were compared to the actual SDOCT measurements. The area under the receiver operating curve (AUC) was used to evaluate the ability of the network to discriminate glaucomatous visual field loss from normal eyes.

RESULTS

The DL predictions of global BMO-MRW from all optic disc photographs in the test set (mean ± standard deviation [SD]: 228.8 ± 63.1 μm) were highly correlated with the observed values from SDOCT (mean ± SD: 226.0 ± 73.8 μm) (Pearson's r = 0.88; R = 77%; P < .001), with mean absolute error of the predictions of 27.8 μm. The AUCs for discriminating glaucomatous from healthy eyes with the DL predictions and actual SDOCT global BMO-MRW measurements were 0.945 (95% confidence interval [CI]: 0.874-0.980) and 0.933 (95% CI: 0.856-0.975), respectively (P = .587).

CONCLUSIONS

A DL network can be trained to quantify the amount of neuroretinal damage on optic disc photographs using SDOCT BMO-MRW as a reference. This algorithm showed high accuracy for glaucoma detection, and may potentially eliminate the need for human gradings of disc photographs.

摘要

目的

利用来自光谱域光学相干断层扫描(SDOCT)的最小视网膜神经纤维层宽度相对于脉络膜开口(BMO-MRW)来训练一种量化眼底照片中青光眼性神经视网膜损伤的深度学习(DL)算法。

设计

横断面研究。

方法

将来自 490 名受试者 927 只眼中的 9282 对视盘照片和 SDOCT 视神经头部扫描随机分为验证加训练(80%)和测试集(20%)。训练一个 DL 卷积神经网络,以预测评估视盘照片时的 SDOCT BMO-MRW 全局和扇区值。将 DL 网络的预测与实际 SDOCT 测量值进行比较。使用受试者工作特征曲线下的面积(AUC)来评估网络区分青光眼性视野损失与正常眼的能力。

结果

测试集中所有视盘照片的全局 BMO-MRW 的 DL 预测值(平均值±标准差[SD]:228.8±63.1μm)与 SDOCT 的实际测量值(平均值±SD:226.0±73.8μm)高度相关(Pearson r=0.88;R=77%;P<0.001),预测值的平均绝对误差为 27.8μm。使用 DL 预测和实际 SDOCT 全局 BMO-MRW 测量值来区分青光眼与健康眼的 AUC 分别为 0.945(95%置信区间[CI]:0.874-0.980)和 0.933(95% CI:0.856-0.975)(P=0.587)。

结论

可以训练一个 DL 网络使用 SDOCT BMO-MRW 作为参考来量化视盘照片上的神经视网膜损伤量。该算法对青光眼检测具有很高的准确性,并且可能潜在地消除对视盘照片的人工分级的需求。

相似文献

1
A Deep Learning Algorithm to Quantify Neuroretinal Rim Loss From Optic Disc Photographs.
Am J Ophthalmol. 2019 May;201:9-18. doi: 10.1016/j.ajo.2019.01.011. Epub 2019 Jan 26.
2
From Machine to Machine: An OCT-Trained Deep Learning Algorithm for Objective Quantification of Glaucomatous Damage in Fundus Photographs.
Ophthalmology. 2019 Apr;126(4):513-521. doi: 10.1016/j.ophtha.2018.12.033. Epub 2018 Dec 20.
3
Diagnostic Accuracy of Optical Coherence Tomography and Scanning Laser Tomography for Identifying Glaucoma in Myopic Eyes.
Ophthalmology. 2016 Jun;123(6):1181-9. doi: 10.1016/j.ophtha.2016.01.052. Epub 2016 Mar 15.
5
Human Versus Machine: Comparing a Deep Learning Algorithm to Human Gradings for Detecting Glaucoma on Fundus Photographs.
Am J Ophthalmol. 2020 Mar;211:123-131. doi: 10.1016/j.ajo.2019.11.006. Epub 2019 Nov 12.
6
Detection of Progressive Glaucomatous Optic Nerve Damage on Fundus Photographs with Deep Learning.
Ophthalmology. 2021 Mar;128(3):383-392. doi: 10.1016/j.ophtha.2020.07.045. Epub 2020 Jul 28.
7
Structural Reversal of Disc Cupping After Trabeculectomy Alters Bruch Membrane Opening-Based Parameters to Assess Neuroretinal Rim.
Am J Ophthalmol. 2018 Oct;194:143-152. doi: 10.1016/j.ajo.2018.07.016. Epub 2018 Jul 25.
8
9
The use of Bruch's membrane opening-based optical coherence tomography of the optic nerve head for glaucoma detection in microdiscs.
Br J Ophthalmol. 2017 Apr;101(4):530-535. doi: 10.1136/bjophthalmol-2016-308957. Epub 2016 Jul 19.
10
Neuroretinal rim response to transient changes in intraocular pressure in healthy non-human primate eyes.
Exp Eye Res. 2020 Apr;193:107978. doi: 10.1016/j.exer.2020.107978. Epub 2020 Feb 17.

引用本文的文献

4
Artificial intelligence in ophthalmology: opportunities, challenges, and ethical considerations.
Med Hypothesis Discov Innov Ophthalmol. 2025 May 10;14(1):255-272. doi: 10.51329/mehdiophthal1517. eCollection 2025 Spring.
5
Tackling visual impairment: emerging avenues in ophthalmology.
Front Med (Lausanne). 2025 Apr 28;12:1567159. doi: 10.3389/fmed.2025.1567159. eCollection 2025.
8
Utilization of Image-Based Deep Learning in Multimodal Glaucoma Detection Neural Network from a Primary Patient Cohort.
Ophthalmol Sci. 2025 Jan 3;5(3):100703. doi: 10.1016/j.xops.2025.100703. eCollection 2025 May-Jun.
10
Artificial intelligence virtual assistants in primary eye care practice.
Ophthalmic Physiol Opt. 2025 Mar;45(2):437-449. doi: 10.1111/opo.13435. Epub 2024 Dec 26.

本文引用的文献

2
Efficacy of a Deep Learning System for Detecting Glaucomatous Optic Neuropathy Based on Color Fundus Photographs.
Ophthalmology. 2018 Aug;125(8):1199-1206. doi: 10.1016/j.ophtha.2018.01.023. Epub 2018 Mar 2.
5
Structure-function relationship comparison between retinal nerve fibre layer and Bruch's membrane opening-minimum rim width in glaucoma.
Int J Ophthalmol. 2017 Oct 18;10(10):1534-1538. doi: 10.18240/ijo.2017.10.09. eCollection 2017.
6
Glaucoma Screening in Nepal: Cup-to-Disc Estimate With Standard Mydriatic Fundus Camera Compared to Portable Nonmydriatic Camera.
Am J Ophthalmol. 2017 Oct;182:99-106. doi: 10.1016/j.ajo.2017.07.010. Epub 2017 Jul 19.
8
Applying artificial intelligence to disease staging: Deep learning for improved staging of diabetic retinopathy.
PLoS One. 2017 Jun 22;12(6):e0179790. doi: 10.1371/journal.pone.0179790. eCollection 2017.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验