Suppr超能文献

金母汤中主要成分的定性分析和定量分析。

Qualitative Profiling and Quantitative Analysis of Major Constituents in Jinmu-tang by UHPLC-Q-Orbitrap-MS and UPLC-TQ-MS/MS.

机构信息

KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon 34054, Republic of Korea.

Korean Convergence Medicine Major KIOM, University of Science & Technology (UST), Daejeon 34054, Republic of Korea.

出版信息

Molecules. 2022 Nov 15;27(22):7887. doi: 10.3390/molecules27227887.

Abstract

Jinmu-tang (JMT) is a traditional herbal medicine consisting of five herbal medicines: Wolf, Pallas, Roscoe, Koidzumi, and Debeaux. In this study, the JMT components were profiled using UHPLC-Q-Orbitrap-MS, and 23 compounds were identified and characterized. In addition, UPLC-TQ-MS/MS analysis was performed in the positive and negative ion modes of an electrospray ionization source for the simultaneous quantification of the identified compounds. The multiple reaction monitoring (MRM) method was established to increase the sensitivity of the quantitative analysis, and the method was verified through linearity, recovery, and precision. All analytes showed good linearity (R2 ≤ 0.9990). Moreover, the recovery and the relative standard deviation of precision were 86.19-114.62% and 0.20-8.00%, respectively. Using the established MRM analysis method, paeoniflorin was found to be the most abundant compound in JMT. In conclusion, these results provide information on the constituents of JMT and can be applied to quality control and evaluation.

摘要

金母汤(JMT)是一种由五种草药组成的传统草药:狼、帕拉斯、罗氏、古志美和德贝。在这项研究中,使用 UHPLC-Q-Orbitrap-MS 对 JMT 成分进行了分析,鉴定并表征了 23 种化合物。此外,还在电喷雾电离源的正、负离子模式下进行了 UPLC-TQ-MS/MS 分析,以同时定量鉴定出的化合物。采用多重反应监测(MRM)方法提高定量分析的灵敏度,并通过线性、回收率和精密度对方法进行验证。所有分析物均表现出良好的线性(R2 ≤ 0.9990)。此外,回收率和精密度的相对标准偏差分别为 86.19-114.62%和 0.20-8.00%。使用建立的 MRM 分析方法,发现 JMT 中含量最丰富的化合物是芍药苷。总之,这些结果提供了 JMT 成分的信息,可应用于质量控制和评价。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/143b/9699523/651d5dc7c6b7/molecules-27-07887-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验