Haas Sandra, Schmieg Barbara, Wendling Paul, Guthausen Gisela, Hubbuch Jürgen
Institute of Process Engineering in Life Sciences, Section IV: Molecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany.
Institute of Functional Interfaces, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
Polymers (Basel). 2022 Nov 19;14(22):5023. doi: 10.3390/polym14225023.
A time-dependent understanding of swelling characteristics and external stimuli behavior is crucial for the development and understanding of functional hydrogels. Magnetic resonance imaging (MRI) offers the opportunity to study three-dimensional (3D) soft materials nondestructively. This technique is already widely used as an image-based medical diagnostic tool and is applied here to evaluate complex structures of a hydrogel-a double network of chemically crosslinked casein enhanced with alginate-fabricated by 3D printing. When hydrogel disks immersed in four different liquid systems were analyzed, the material exhibited distinct system-dependent behavior characterized by rheological and mechanical measurements. Further material functionalization was achieved by macroscopic structuring of the hydrogel as an auxetic material based on a re-entrant honeycomb structure. MRI offers the advantage of monitoring overall changes in the area of the analyzed specimen and internal structural changes simultaneously. To assess the behavior of this complex structure, a series of short MRI measurements, each lasting 1.7 min, captured liquid diffusion and thus structural swelling behavior. A clear dependence of external and internal structural changes as a function of liquid properties causing these changes was observed. In conclusion, this approach might pave the way for prospective applications to monitor liquid diffusion into (e.g., vascularization) and swelling behavior of functional hydrogels.
对溶胀特性和外部刺激行为的时间依赖性理解对于功能性水凝胶的开发和理解至关重要。磁共振成像(MRI)提供了无损研究三维(3D)软材料的机会。该技术已广泛用作基于图像的医学诊断工具,在此用于评估通过3D打印制造的水凝胶的复杂结构——一种由藻酸盐增强的化学交联酪蛋白双网络。当分析浸入四种不同液体系统中的水凝胶圆盘时,该材料表现出由流变学和力学测量表征的明显的系统依赖性行为。通过将水凝胶宏观构建为基于凹蜂巢结构的负泊松比材料,实现了进一步的材料功能化。MRI的优势在于能够同时监测分析样本区域的整体变化和内部结构变化。为了评估这种复杂结构的行为,进行了一系列每次持续1.7分钟的短时间MRI测量,捕捉液体扩散,从而获得结构溶胀行为。观察到外部和内部结构变化与导致这些变化的液体性质之间存在明显的依赖性。总之,这种方法可能为监测液体扩散进入功能性水凝胶(例如血管化)及其溶胀行为的前瞻性应用铺平道路。