Suppr超能文献

基于面部地标和深度学习方法的盲人掩面面部表情识别。

Masked Face Emotion Recognition Based on Facial Landmarks and Deep Learning Approaches for Visually Impaired People.

机构信息

Department of Computer Engineering, Gachon University, Seongnam 13120, Republic of Korea.

Department of Hardware and Software of Control Systems in Telecommunication, Tashkent University of Information Technologies Named after Muhammad al-Khwarizmi, Tashkent 100084, Uzbekistan.

出版信息

Sensors (Basel). 2023 Jan 17;23(3):1080. doi: 10.3390/s23031080.

Abstract

Current artificial intelligence systems for determining a person's emotions rely heavily on lip and mouth movement and other facial features such as eyebrows, eyes, and the forehead. Furthermore, low-light images are typically classified incorrectly because of the dark region around the eyes and eyebrows. In this work, we propose a facial emotion recognition method for masked facial images using low-light image enhancement and feature analysis of the upper features of the face with a convolutional neural network. The proposed approach employs the AffectNet image dataset, which includes eight types of facial expressions and 420,299 images. Initially, the facial input image's lower parts are covered behind a synthetic mask. Boundary and regional representation methods are used to indicate the head and upper features of the face. Secondly, we effectively adopt a facial landmark detection method-based feature extraction strategy using the partially covered masked face's features. Finally, the features, the coordinates of the landmarks that have been identified, and the histograms of the oriented gradients are then incorporated into the classification procedure using a convolutional neural network. An experimental evaluation shows that the proposed method surpasses others by achieving an accuracy of 69.3% on the AffectNet dataset.

摘要

当前,用于确定一个人情绪的人工智能系统主要依赖于嘴唇和嘴部运动以及眉毛、眼睛和额头等其他面部特征。此外,由于眼睛和眉毛周围的黑暗区域,低光照图像通常会被错误分类。在这项工作中,我们提出了一种使用低光照图像增强和面部上特征的卷积神经网络的特征分析来识别蒙面人脸图像的面部表情识别方法。所提出的方法使用了 AffectNet 图像数据集,其中包括八种面部表情和 420,299 张图像。首先,用合成面具遮住人脸图像的下部。边界和区域表示方法用于指示头部和面部上特征。其次,我们使用基于部分遮挡的面具人脸特征的面部地标检测方法有效地采用特征提取策略。最后,将特征、已识别的地标坐标和方向梯度直方图合并到分类过程中,使用卷积神经网络进行分类。实验评估表明,所提出的方法在 AffectNet 数据集上的准确率达到 69.3%,超过了其他方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c791/9921901/19fccdb4bfdb/sensors-23-01080-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验