Faculty of Biology, Medicine and Health, School of Medical Sciences, Division of Cancer Sciences, The University of Manchester, The Christie NHS Foundation Trust, Manchester, UK.
Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, UK.
Med Phys. 2023 Apr;50(4):2071-2088. doi: 10.1002/mp.16125. Epub 2022 Dec 17.
Studies of skeletal metabolism using measurements of bone metabolic flux (K ) obtained with [ F] sodium fluoride ([ F]NaF) positron emission tomography (PET) scans have been used in clinical research for the last 30 years. The technique has proven useful as an imaging biomarker in trials of novel drug treatments for osteoporosis and investigating other metabolic bone diseases, including chronic kidney disease mineral and bone disorder. It has also been shown to be valuable in metastatic bone disease in breast cancer patients and may have potential in other cancer types, such as prostate cancer, to assess early bone fracture risk. However, these studies have usually required a 60-min dynamic PET scan and measurement of the arterial input function (AIF), making them difficult to translate into the clinic for diagnostic purposes. We have previously proposed a simplified method that estimates the K value at an imaging site from a short (4-min) static scan and venous blood samples. A key advantage of this method is that, by acquiring a series of static scans, values of K can be quickly measured at multiple sites using a single injection of the tracer. To date, the widespread use of [ F]NaF PET has been limited by the need to measure the AIF required for the mathematical modeling of tracer kinetics to derive K and other kinetic parameters. In this report, we review different methods of measuring the AIF, including direct arterial sampling, the use of a semi-population input function (SP-AIF), and image-derived input function, the latter two requiring only two or three venous blood samples obtained between 30 and 60 min after injection. We provide an SP-AIF model and a spreadsheet for calculating K values using the static scan method that others can use to study bone metabolism in metabolic and metastatic bone diseases without requiring invasive arterial blood sampling. The method shortens scan times, simplifies procedures, and reduces the cost of multicenter trials without losing accuracy or precision.
使用 [ F] 氟酸钠 ([ F]NaF) 正电子发射断层扫描 (PET) 扫描测量的骨代谢通量 (K) 进行骨骼代谢研究在过去 30 年中一直用于临床研究。该技术已被证明是一种有用的成像生物标志物,可用于骨质疏松症和其他代谢性骨疾病的新型药物治疗试验,包括慢性肾脏病矿物质和骨异常。它也已被证明在乳腺癌患者的转移性骨疾病中具有价值,并且在其他癌症类型(如前列腺癌)中可能具有评估早期骨骨折风险的潜力。然而,这些研究通常需要 60 分钟的动态 PET 扫描和动脉输入函数 (AIF) 的测量,这使得它们难以转化为临床诊断目的。我们之前提出了一种简化方法,该方法可以从短(4 分钟)静态扫描和静脉血样中估算成像部位的 K 值。该方法的一个关键优势是,通过采集一系列静态扫描,可以使用单个示踪剂注射快速测量多个部位的 K 值。迄今为止,[ F]NaF PET 的广泛使用受到限制,因为需要测量示踪剂动力学的数学模型所需的 AIF,以得出 K 和其他动力学参数。在本报告中,我们回顾了测量 AIF 的不同方法,包括直接动脉采样、使用半人群输入函数 (SP-AIF) 和图像衍生输入函数,后两种方法仅需要在注射后 30 至 60 分钟之间采集两到三个静脉血样。我们提供了一个 SP-AIF 模型和一个使用静态扫描方法计算 K 值的电子表格,其他人可以使用该模型和电子表格在不进行侵入性动脉采血的情况下研究代谢性和转移性骨疾病中的骨代谢。该方法缩短了扫描时间,简化了程序,降低了多中心试验的成本,而不会降低准确性或精密度。