Suppr超能文献

在原子尺度上探究 LiNiO 的 Ni(OH) 前体:对层状阴极活性材料中结构缺陷起源的深入了解。

Probing the Ni(OH) Precursor for LiNiO at the Atomic Scale: Insights into the Origin of Structural Defect in a Layered Cathode Active Material.

机构信息

Materials Science Center (WZMW) and Department of Physics, Philipps-University Marburg, 35032, Marburg, Germany.

Battery and Electrochemistry Laboratory, Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.

出版信息

Small. 2023 Jan;19(4):e2205508. doi: 10.1002/smll.202205508. Epub 2022 Nov 26.

Abstract

In lithium ion batteries (LIBs), the layered cathode materials of composition LiNi Co Mn O  are critical for achieving high energy densities. A high nickel content (>80%) provides an attractive balance between high energy density, long lifetime, and low cost. Consequently, Ni-rich layered oxides cathode active materials (CAMs) are in high demand, and the importance of LiNiO (LNO) as limiting case, is hence paramount. However, achieving perfect stoichiometry is a challenge resulting in various structural issues, which successively impact physicochemical properties and result in the capacity fade of LIBs. To better understand defect formation in LNO, the role of the Ni(OH)  precursor morphology in the synthesis of LNO requires in-depth investigation. By employing aberration-corrected scanning transmission electron microscopy, electron energy loss spectroscopy, and precession electron diffraction, a direct observation of defects in the Ni(OH)  precursor preparedis reported and the ex situ structural evolution from the precursor to the end product is monitored. During synthesis, the layered Ni(OH)  structure transforms to partially lithiated (non-layered) NiO and finally to layered LNO. The results suggest that the defects observed in commercially relevant CAMs originate to a large extent from the precursors, hence care must be taken in tuning the co-precipitation parameters to synthesize defect-free Ni-rich layered oxides CAMs.

摘要

在锂离子电池(LIBs)中,组成式为 LiNiCoMnO 的层状阴极材料对于实现高能量密度至关重要。高镍含量(>80%)在高能量密度、长寿命和低成本之间提供了有吸引力的平衡。因此,富镍层状氧化物阴极活性材料(CAMs)的需求很高,LiNiO(LNO)作为限制情况的重要性也就不言而喻。然而,实现完美的化学计量比是一个挑战,导致了各种结构问题,这些问题相继影响物理化学性质,并导致 LIBs 的容量衰减。为了更好地理解 LNO 中的缺陷形成,需要深入研究 Ni(OH)前体形态在 LNO 合成中的作用。通过使用像差校正扫描透射电子显微镜、电子能量损失光谱和进动电子衍射,直接观察到制备的 Ni(OH)前体中的缺陷,并监测从前体到最终产物的原位结构演变。在合成过程中,层状 Ni(OH)结构转化为部分锂化(非层状)NiO,最终转化为层状 LNO。结果表明,在商业相关 CAMs 中观察到的缺陷在很大程度上源于前体,因此在调整共沉淀参数以合成无缺陷富镍层状氧化物 CAMs 时必须小心。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验