Molecular Imaging Center Antwerp (MICA), University of Antwerp, Belgium.
Bio-Imaging Lab, University of Antwerp, Belgium.
Neuroimage. 2022 Dec 1;264:119771. doi: 10.1016/j.neuroimage.2022.119771. Epub 2022 Nov 24.
Synaptic vesicle glycoprotein 2A (SV2A) is a vesicle glycoprotein involved in neurotransmitter release. SV2A is located on the pre-synaptic terminals of neurons and visualized using the radioligand [C]UCB-J and positron emission tomography (PET) imaging. Thus, SV2A PET imaging can provide a proxy for pre-synaptic density in health and disease. This study aims to apply independent component analysis (ICA) to SV2A PET data acquired in mice to identify pre-synaptic density networks (pSDNs), explore how ageing affects these pSDNs, and determine the impact of a neurological disorder on these networks.
We used [C]UCB-J PET imaging data (n = 135) available at different ages (3, 7, 10, and 16 months) in wild-type (WT) C57BL/6J mice and in diseased mice (mouse model of Huntington's disease, HD) with reported synaptic deficits. First, ICA was performed on a healthy dataset after it was split into two equal-sized samples (n = 36 each) and the analysis was repeated 50 times in different partitions. We tested different model orders (8, 12, and 16) and identified the pSDNs. Next, we investigated the effect of age on the loading weights of the identified pSDNs. Additionally, the identified pSDNs were compared to those of diseased mice to assess the impact of disease on each pSDNs.
Model order 12 resulted in the preferred choice to provide six reliable and reproducible independent components (ICs) as supported by the cluster-quality index (I) and regression coefficients (β) values. Temporal analysis showed age-related statistically significant changes on the loading weights in four ICs. ICA in an HD model revealed a statistically significant disease-related effect on the loading weights in several pSDNs in line with the progression of the disease.
This study validated the use of ICA on SV2A PET data acquired with [C]UCB-J for the identification of cerebral pre-synaptic density networks in mice in a rigorous and reproducible manner. Furthermore, we showed that different pSDNs change with age and are affected in a disease condition. These findings highlight the potential value of ICA in understanding pre-synaptic density networks in the mouse brain.
突触小泡糖蛋白 2A(SV2A)是一种参与神经递质释放的囊泡糖蛋白。SV2A 位于神经元的突触前末梢,使用放射性配体 [C]UCB-J 和正电子发射断层扫描(PET)成像进行可视化。因此,SV2A PET 成像可以提供健康和疾病中突触前密度的替代物。本研究旨在应用独立成分分析(ICA)对小鼠的 SV2A PET 数据进行分析,以识别突触前密度网络(pSDN),探索衰老如何影响这些 pSDN,并确定神经障碍对这些网络的影响。
我们使用在不同年龄(3、7、10 和 16 个月)的野生型(WT)C57BL/6J 小鼠和报道有突触缺陷的亨廷顿病(HD)疾病模型小鼠中获得的 [C]UCB-J PET 成像数据(n=135)。首先,我们将数据集分为两个大小相等的样本(n=36 个),然后对其进行 ICA 分析,并在不同分区中重复 50 次。我们测试了不同的模型顺序(8、12 和 16),并确定了 pSDN。接下来,我们研究了年龄对所确定的 pSDN 加载权重的影响。此外,我们还将所确定的 pSDN 与疾病小鼠进行了比较,以评估疾病对每个 pSDN 的影响。
模型顺序 12 提供了六个可靠且可重复的独立成分(IC),这得到了聚类质量指数(I)和回归系数(β)值的支持。时间分析显示,在四个 IC 中,年龄与加载权重呈显著相关变化。在 HD 模型中进行的 ICA 显示,在与疾病进展一致的几个 pSDN 中,存在与疾病相关的统计学显著影响。
本研究以严格和可重复的方式验证了在使用 [C]UCB-J 获得的 SV2A PET 数据上应用 ICA 来识别小鼠大脑中突触前密度网络的方法。此外,我们还表明,不同的 pSDN 会随年龄而变化,并在疾病状态下受到影响。这些发现突显了 ICA 在理解小鼠大脑中突触前密度网络方面的潜在价值。