Suppr超能文献

通过三维生物打印工艺对混合水凝胶进行物理改性以制造全尺寸构建体。

Physical Modification of Hybrid Hydrogels to Fabricate Full-Scale Construct Using Three-Dimensional Bio-Printing Process.

作者信息

Nelson Cartwright, Tuladhar Slesha, Habib Ahasan

机构信息

Sustainable Product Design and Architecture, Keene State College, 229 Main Street, Keene, NH 03435.

出版信息

J Micro Nanomanuf. 2022 Mar 1;10(1):011005. doi: 10.1115/1.4055230. Epub 2022 Sep 27.

Abstract

Bioprinting for regenerative medicine has been gaining a lot of popularity in today's world. Despite being one of the rigorously studied fields, there are still several challenges yet to be solved. Geometric fidelity and mechanical complexities stand as roadblocks when it comes to the printability of the customized constructs. Exploring the rheological properties of the compositions helps us understand the physical and mechanical properties of the biomaterials which are closely tied to the printability of the filament and eventually, geometric fidelity of the constructs. To ensure the structural integrity of the constructs, viscosity enhancers such as carboxymethyl cellulose (CMC) and crosslinkers like CaCl and CaSO were used. These crosslinkers can be used before (precrosslinking) and after (postcrosslinking) the extrusion of considered compositions to investigate and compare the outcome. To do this, mixtures of CMC (viscosity enhancer), Alginate, and CaCl and CaSO (crosslinkers) were prepared at various concentrations maintaining minimum solid content (≤8%). Each composition was subjected to a set of rheological tests like flow curve for shear thinning behavior, three points thixotropic for recovery rate, and amplitude test for gelation point. Various geometric fidelity identification tests were conducted and correlated with their physical properties. Some compositions were used to fabricate large-scale constructs (in cm-scale) to demonstrate their capability. This research is a thorough investigation of compositions when they are introduced to crosslinkers and viscosity enhancers which can be crucial for the 3D printing world.

摘要

用于再生医学的生物打印在当今世界越来越受欢迎。尽管它是经过严格研究的领域之一,但仍有一些挑战有待解决。在定制结构的可打印性方面,几何保真度和机械复杂性是障碍。探索组合物的流变特性有助于我们了解生物材料的物理和机械性能,这些性能与长丝的可打印性密切相关,并最终与结构的几何保真度相关。为确保结构的完整性,使用了羧甲基纤维素(CMC)等粘度增强剂以及氯化钙和硫酸钙等交联剂。这些交联剂可在考虑的组合物挤出之前(预交联)和之后(后交联)使用,以研究和比较结果。为此,制备了不同浓度的CMC(粘度增强剂)、藻酸盐以及氯化钙和硫酸钙(交联剂)的混合物,保持最低固体含量(≤8%)。每种组合物都进行了一系列流变测试,如用于剪切变稀行为的流动曲线测试、用于恢复率的三点触变性测试以及用于凝胶化点的振幅测试。进行了各种几何保真度识别测试,并将其与物理性能相关联。一些组合物被用于制造大规模结构(厘米级)以展示其能力。这项研究是对引入交联剂和粘度增强剂时组合物的全面研究,这对3D打印领域可能至关重要。

相似文献

1
Physical Modification of Hybrid Hydrogels to Fabricate Full-Scale Construct Using Three-Dimensional Bio-Printing Process.
J Micro Nanomanuf. 2022 Mar 1;10(1):011005. doi: 10.1115/1.4055230. Epub 2022 Sep 27.
2
3D Bio-Printability of Hybrid Pre-Crosslinked Hydrogels.
Int J Mol Sci. 2021 Dec 15;22(24):13481. doi: 10.3390/ijms222413481.
3
Tuning Shear Thinning Factors of 3D Bio-Printable Hydrogels Using Short Fiber.
Materials (Basel). 2023 Jan 6;16(2):572. doi: 10.3390/ma16020572.
4
Alginate-Based Bioinks for 3D Bioprinting and Fabrication of Anatomically Accurate Bone Grafts.
Tissue Eng Part A. 2021 Sep;27(17-18):1168-1181. doi: 10.1089/ten.TEA.2020.0305. Epub 2021 Feb 26.
5
3D Printability of Alginate-Carboxymethyl Cellulose Hydrogel.
Materials (Basel). 2018 Mar 20;11(3):454. doi: 10.3390/ma11030454.
6
A rheological approach to assess the printability of thermosensitive chitosan-based biomaterial inks.
Biomed Mater. 2020 Nov 27;16(1):015003. doi: 10.1088/1748-605X/abb2d8.
7
Enhanced rheological behaviors of alginate hydrogels with carrageenan for extrusion-based bioprinting.
J Mech Behav Biomed Mater. 2019 Oct;98:187-194. doi: 10.1016/j.jmbbm.2019.06.014. Epub 2019 Jun 22.
10
3D bioprinting and in vitro study of bilayered membranous construct with human cells-laden alginate/gelatin composite hydrogels.
Colloids Surf B Biointerfaces. 2019 Sep 1;181:1026-1034. doi: 10.1016/j.colsurfb.2019.06.069. Epub 2019 Jun 29.

本文引用的文献

1
Rheological Analysis of Bio-ink for 3D Bio-printing Processes.
J Manuf Process. 2022 Apr;76:708-718. doi: 10.1016/j.jmapro.2022.02.048. Epub 2022 Mar 5.
2
3D Bio-Printability of Hybrid Pre-Crosslinked Hydrogels.
Int J Mol Sci. 2021 Dec 15;22(24):13481. doi: 10.3390/ijms222413481.
3
Bio-printing of aligned GelMa-based cell-laden structure for muscle tissue regeneration.
Bioact Mater. 2021 Jul 6;8:57-70. doi: 10.1016/j.bioactmat.2021.06.031. eCollection 2022 Feb.
4
3D bioprinting of a cell-laden antibacterial polysaccharide hydrogel composite.
Carbohydr Polym. 2021 Jul 15;264:117989. doi: 10.1016/j.carbpol.2021.117989. Epub 2021 Mar 26.
5
Extrusion-Based Bioprinting of Multilayered Nanocellulose Constructs for Cell Cultivation Using Freezing and Preprint CaCl Cross-Linking.
ACS Omega. 2020 Dec 30;6(1):569-578. doi: 10.1021/acsomega.0c05036. eCollection 2021 Jan 12.
6
Alginate-Based Bioinks for 3D Bioprinting and Fabrication of Anatomically Accurate Bone Grafts.
Tissue Eng Part A. 2021 Sep;27(17-18):1168-1181. doi: 10.1089/ten.TEA.2020.0305. Epub 2021 Feb 26.
7
Inkjet Bioprinting of Biomaterials.
Chem Rev. 2020 Oct 14;120(19):10793-10833. doi: 10.1021/acs.chemrev.0c00008. Epub 2020 Sep 9.
8
Hydrogels for Bioprinting: A Systematic Review of Hydrogels Synthesis, Bioprinting Parameters, and Bioprinted Structures Behavior.
Front Bioeng Biotechnol. 2020 Aug 6;8:776. doi: 10.3389/fbioe.2020.00776. eCollection 2020.
9
3D Printing of Cytocompatible Gelatin-Cellulose-Alginate Blend Hydrogels.
Macromol Biosci. 2020 Oct;20(10):e2000106. doi: 10.1002/mabi.202000106. Epub 2020 Aug 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验