International Institute of Rare Sugar Research and Education, Kagawa University, Takamatsu, Kagawa, 760-8521, Japan.
Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki, Kagawa, 761-0795, Japan.
Appl Microbiol Biotechnol. 2023 Jan;107(1):233-245. doi: 10.1007/s00253-022-12297-z. Epub 2022 Nov 28.
Transketolase is a key enzyme in the pentose phosphate pathway in all organisms, recognizing sugar phosphates as substrates. Transketolase with a cofactor of thiamine pyrophosphate catalyzes the transfer of a 2-carbon unit from D-xylulose-5-phosphate to D-ribose-5-phosphate (5-carbon aldose), giving D-sedoheptulose-7-phosphate (7-carbon ketose). Transketolases can also recognize non-phosphorylated monosaccharides as substrates, and catalyze the formation of non-phosphorylated 7-carbon ketose (heptulose), which has attracted pharmaceutical attention as an inhibitor of sugar metabolism. Here, we report the structural and biochemical characterizations of transketolase from Thermus thermophilus HB8 (TtTK), a well-characterized thermophilic Gram-negative bacterium. TtTK showed marked thermostability with maximum enzyme activity at 85 °C, and efficiently catalyzed the formation of heptuloses from lithium hydroxypyruvate and four aldopentoses: D-ribose, L-lyxose, L-arabinose, and D-xylose. The X-ray structure showed that TtTK tightly forms a homodimer with more interactions between subunits compared with transketolase from other organisms, contributing to its thermal stability. A modeling study based on X-ray structures suggested that D-ribose and L-lyxose could bind to the catalytic site of TtTK to form favorable hydrogen bonds with the enzyme, explaining the high conversion rates of 41% (D-ribose) and 43% (L-lyxose) to heptulose. These results demonstrate the potential of TtTK as an enzyme producing a rare sugar of heptulose. KEY POINTS: • Transketolase catalyzes the formation of a 7-carbon sugar phosphate • Structural and biochemical characterizations of thermophilic transketolase were done • The enzyme could produce non-phosphorylated 7-carbon ketoses from sugars.
转酮醇酶是所有生物中戊糖磷酸途径的关键酶,可识别糖磷酸作为底物。在焦磷酸硫胺素作为辅助因子的作用下,转酮醇酶催化从 D-木酮糖-5-磷酸到 D-核糖-5-磷酸(五碳醛糖)的 2-碳单元转移,生成 D-景天庚酮糖-7-磷酸(七碳酮糖)。转酮醇酶还可以识别非磷酸化的单糖作为底物,并催化非磷酸化的七碳酮糖(庚酮糖)的形成,这引起了作为糖代谢抑制剂的药物关注。在这里,我们报告了嗜热革兰氏阴性菌 Thermus thermophilus HB8(TtTK)中转酮醇酶的结构和生化特性,这是一种特征明确的嗜热菌。TtTK 表现出明显的热稳定性,最大酶活在 85°C,并且能够有效地从锂羟丙酮酸和四个醛戊糖:D-核糖、L-岩藻糖、L-阿拉伯糖和 D-木糖催化庚酮糖的形成。X 射线结构表明,与其他生物体的转酮醇酶相比,TtTK 紧密地形成同源二聚体,亚基之间有更多的相互作用,这有助于其热稳定性。基于 X 射线结构的建模研究表明,D-核糖和 L-岩藻糖可以结合到 TtTK 的催化位点,与酶形成有利的氢键,解释了对庚酮糖的高转化率 41%(D-核糖)和 43%(L-岩藻糖)。这些结果表明 TtTK 作为一种产生稀有庚酮糖的酶具有潜力。关键点:• 转酮醇酶催化 7-碳糖磷酸的形成• 对嗜热转酮醇酶进行了结构和生化特性分析• 该酶可以从糖中产生非磷酸化的 7-碳酮糖。