Suppr超能文献

评估电化学高级氧化法对病原体的消毒效率,以成为一种可持续的中水回用技术。

Evaluation of pathogen disinfection efficiency of electrochemical advanced oxidation to become a sustainable technology for water reuse.

作者信息

Forés Eva, Mejías-Molina Cristina, Ramos Arantxa, Itarte Marta, Hundesa Ayalkibet, Rusiñol Marta, Martínez-Puchol Sandra, Esteve-Bricullé Pau, Espejo-Valverde Alejandro, Sirés Ignasi, Calvo Miquel, Araujo Rosa M, Girones Rosina

机构信息

Laboratory of Viruses Contaminants of Water and Food, Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain; Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), Barcelona, Spain.

Secció de Microbiologia, Virologia i Biotecnologia, Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona (UB), Barcelona, Spain.

出版信息

Chemosphere. 2023 Feb;313:137393. doi: 10.1016/j.chemosphere.2022.137393. Epub 2022 Nov 26.

Abstract

Water treatment and reuse is gaining acceptance as a strategy to fight against water contamination and scarcity, but it usually requires complex treatments to ensure safety. Consequently, the electrochemical advanced processes have emerged as an effective alternative for water remediation. The main objective here is to perform a systematic study that quantifies the efficiency of a laboratory-scale electrochemical system to inactivate bacteria, bacterial spores, protozoa, bacteriophages and viruses in synthetic water, as well as in urban wastewater once treated in a wetland for reuse in irrigation. A Ti|RuO-based plate and Si|BDD thin-film were comparatively employed as the anode, which was combined with a stainless-steel cathode in an undivided cell operating at 12 V. Despite the low resulting current density (<15 mA/cm), both anodes demonstrated the production of oxidants in wetland effluent water. The disinfection efficiency was high for the bacteriophage MS2 (T99 in less than 7.1 min) and bacteria (T99 in about 30 min as maximum), but limited for CBV5 and TuV, spores and amoebas (T99 in more than 300 min). MS2 presented a rapid exponential inactivation regardless of the anode and bacteria showed similar sigmoidal curves, whereas human viruses, spores and amoebas resulted in linear profiles. Due the different sensitivity of microorganisms, different models must be considered to predict their inactivation kinetics. On this basis, it can be concluded that evaluating the viral inactivation from inactivation profiles determined for bacteria or some bacteriophages may be misleading. Therefore, neither bacteria nor bacteriophages are suitable models for the disinfection of water containing enteric viruses. The electrochemical treatment added as a final disinfection step enhances the inactivation of microorganisms, which could contribute to safe water reuse for irrigation. Considering the calculated low energy consumption, decentralized water treatment units powered by photovoltaic modules might be a near reality.

摘要

水处理与回用作为应对水污染和水资源短缺的一种策略正逐渐得到认可,但通常需要复杂的处理工艺来确保安全。因此,电化学高级处理工艺已成为水修复的一种有效替代方法。本文的主要目的是进行一项系统研究,量化实验室规模的电化学系统对合成水中以及经湿地处理后用于灌溉回用的城市废水中的细菌、细菌芽孢、原生动物、噬菌体和病毒的灭活效率。分别采用基于Ti|RuO的平板和Si|BDD薄膜作为阳极,并将其与不锈钢阴极组合在一个未分隔的电池中,该电池在12 V下运行。尽管最终的电流密度较低(<15 mA/cm),但两种阳极均在湿地出水水中产生了氧化剂。噬菌体MS2的消毒效率很高(T99在不到7.1分钟内),细菌的消毒效率也较高(T99最长约30分钟),但对CBV5和TuV、芽孢和变形虫的消毒效率有限(T99超过300分钟)。无论使用哪种阳极,MS2都呈现快速指数失活,细菌呈现类似的S形曲线,而人类病毒、芽孢和变形虫则呈现线性曲线。由于微生物的敏感性不同,必须考虑使用不同的模型来预测它们的失活动力学。在此基础上,可以得出结论,根据细菌或某些噬菌体的失活曲线来评估病毒失活可能会产生误导。因此,细菌和噬菌体都不是用于含肠道病毒水消毒的合适模型。作为最终消毒步骤添加的电化学处理可增强微生物的失活,这有助于实现安全的灌溉用水回用。考虑到计算得出的低能耗,由光伏模块供电的分散式水处理单元可能即将成为现实。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验