Suppr超能文献

双侧加权相对全变差在低剂量 CT 重建中的应用。

Bilateral Weighted Relative Total Variation for Low-Dose CT Reconstruction.

机构信息

College of Mathematics and Statistics, Chongqing University, Chongqing, 401331, China.

Engineering Research Center of Industrial Computed Tomography, Nondestructive Testing of the Education Ministry of China, Chongqing University, Chongqing, 400044, China.

出版信息

J Digit Imaging. 2023 Apr;36(2):458-467. doi: 10.1007/s10278-022-00720-w. Epub 2022 Nov 28.

Abstract

Low-dose computed tomography (LDCT) has been widely used for various clinic applications to reduce the X-ray dose absorbed by patients. However, LDCT is usually degraded by severe noise over the image space. The image quality of LDCT has attracted aroused attentions of scholars. In this study, we propose the bilateral weighted relative total variation (BRTV) used for image restoration to simultaneously maintain edges and further reduce noise, then propose the BRTV-regularized projections onto convex sets (POCS-BRTV) model for LDCT reconstruction. Referring to the spacial closeness and the similarity of gray value between two pixels in a local rectangle, POCS-BRTV can adaptively extract sharp edges and minor details during the iterative reconstruction process. Evaluation indexes and visual effects are used to measure the performances among different algorithms. Experimental results indicate that the proposed POCS-BRTV model can achieve superior image quality than the compared algorithms in terms of the structure and texture preservation.

摘要

低剂量计算机断层扫描(LDCT)已广泛应用于各种临床应用中,以减少患者吸收的 X 射线剂量。然而,LDCT 通常会因图像空间中的严重噪声而降低图像质量。LDCT 的图像质量引起了学者们的关注。在这项研究中,我们提出了双边加权相对全变差(BRTV)用于图像恢复,以同时保持边缘并进一步降低噪声,然后提出了 BRTV-正则化投影到凸集(POCS-BRTV)模型用于 LDCT 重建。参考局部矩形内两个像素之间的空间接近度和灰度值相似性,POCS-BRTV 可以在迭代重建过程中自适应地提取锐利的边缘和微小的细节。使用评估指标和视觉效果来衡量不同算法的性能。实验结果表明,与比较算法相比,所提出的 POCS-BRTV 模型在结构和纹理保持方面可以实现更好的图像质量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88cc/10039199/50982b9a1d83/10278_2022_720_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验