Suppr超能文献

用于使用拉曼显微镜快速识别微塑料的可定制机器学习模型。

Customizable Machine-Learning Models for Rapid Microplastic Identification Using Raman Microscopy.

作者信息

Lei Benjamin, Bissonnette Justine R, Hogan Úna E, Bec Avery E, Feng Xinyi, Smith Rodney D L

机构信息

Department of Chemistry, University of Waterloo, 200 University Avenue W., Waterloo, OntarioN2L 3G1, Canada.

Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue W., Waterloo, OntarioN2L 3G1, Canada.

出版信息

Anal Chem. 2022 Dec 13;94(49):17011-17019. doi: 10.1021/acs.analchem.2c02451. Epub 2022 Nov 29.

Abstract

Raman spectroscopy is commonly used in microplastics identification, but equipment variations yield inconsistent data structures that disrupt the development of communal analytical tools. We report a strategy to overcome the issue using a database of high-resolution, full-window Raman spectra. This approach enables customizable analytical tools to be easily created─a feature we demonstrate by creating machine-learning classification models using open-source random-forest, K-nearest neighbors, and multi-layer perceptron algorithms. These models yield >95% classification accuracy when trained on spectroscopic data with spectroscopic data downgraded to 1, 2, 4, or 8 cm spacings in Raman shift. The accuracy can be maintained even in non-ideal conditions, such as with spectroscopic sampling rates of 1 kHz and when microplastic particles are outside the focal plane of the laser. This approach enables the creation of classification models that are robust and adaptable to varied spectrometer setups and experimental needs.

摘要

拉曼光谱常用于微塑料识别,但设备差异会产生不一致的数据结构,从而干扰通用分析工具的开发。我们报告了一种使用高分辨率全窗口拉曼光谱数据库来克服这一问题的策略。这种方法能够轻松创建可定制的分析工具,我们通过使用开源随机森林、K近邻和多层感知器算法创建机器学习分类模型来展示这一特性。当在拉曼位移中光谱数据被降级为1、2、4或8厘米间距的光谱数据上进行训练时,这些模型的分类准确率超过95%。即使在非理想条件下,如光谱采样率为1千赫兹以及微塑料颗粒不在激光焦平面内时,准确率也能得以维持。这种方法能够创建出强大且能适应各种光谱仪设置和实验需求的分类模型。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验