Suppr超能文献

利用与便携式拉曼光谱相关的多尺度扩张卷积注意网络快速识别矿石矿物。

Rapid identification of ore minerals using multi-scale dilated convolutional attention network associated with portable Raman spectroscopy.

机构信息

College of Engineering and Design, Hunan Normal University, Changsha, Hunan 410083, PR China.

School of Automation, Central South University, Changsha 410083, PR China.

出版信息

Spectrochim Acta A Mol Biomol Spectrosc. 2022 Feb 15;267(Pt 2):120607. doi: 10.1016/j.saa.2021.120607. Epub 2021 Nov 13.

Abstract

Electron portable Raman spectroscopy tools for ore mineral identification are widely used in raw ore analysis and mineral process engineering. This paper demonstrates an extremely fast and accurate method for identifying unknown ore mineral samples by portable Raman spectroscopy from the RRUFF database. Resampling and background subtraction procedures are used to eliminate the influence of the Raman spectrometer and fluorescence scattering. For the complex mineral spectral classification task, a multi-scale dilated convolutional attention network is designed. In addition, to investigate the identification performance of our method, several machine learning and two basic deep learning models, including k-nearest neighbor (k-NN), support vector machine (SVM), random forest (RF), cosine similarity, extreme gradient boosting machine (XGBoost), Alexnet and ResNet 18, are also developed on the mineral spectra database and applied for mineral identification. Comparative studies show that our CNN network outperforms other models with state-of-the-art results, achieving a top-1 accuracy of 89.51% and a top-3 accuracy of 96.54%. The function of each module and the explanations of the feature extraction in our CNN network were analyzed by ablation experiments and the Grad-CAM algorithm. The identification of ore mineral samples also proves the outstanding performance of our method. In conclusion, the proposed novel approach that exploits the advantages of portable Raman spectroscopy and a deep learning method is promising for rapidly identifying ore mineral samples.

摘要

便携式电子拉曼光谱仪工具广泛应用于原矿分析和矿物加工工程中的矿石矿物识别。本文展示了一种通过 RRUFF 数据库从便携式拉曼光谱仪快速准确识别未知矿石矿物样本的方法。采用重采样和背景扣除程序消除拉曼光谱仪和荧光散射的影响。针对复杂的矿物光谱分类任务,设计了一种多尺度扩张卷积注意网络。此外,为了研究我们方法的识别性能,还在矿物光谱数据库上开发了几种机器学习和两种基本深度学习模型,包括 k-最近邻(k-NN)、支持向量机(SVM)、随机森林(RF)、余弦相似度、极端梯度提升机(XGBoost)、Alexnet 和 ResNet 18,并应用于矿物识别。对比研究表明,我们的 CNN 网络在矿物识别方面的表现优于其他模型,取得了 top-1 准确率 89.51%和 top-3 准确率 96.54%的优异成绩。通过消融实验和 Grad-CAM 算法分析了 CNN 网络中每个模块的功能和特征提取的解释。矿石矿物样本的识别也证明了我们方法的出色性能。总之,利用便携式拉曼光谱和深度学习方法优势的新型方法在快速识别矿石矿物样本方面具有广阔的应用前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验