基于 2.5D 深度学习的死后计算机断层扫描溺水诊断方法。

A 2.5D Deep Learning-Based Method for Drowning Diagnosis Using Post-Mortem Computed Tomography.

出版信息

IEEE J Biomed Health Inform. 2023 Feb;27(2):1026-1035. doi: 10.1109/JBHI.2022.3225416. Epub 2023 Feb 3.

Abstract

It is challenging to diagnose drowning in autopsy even with the help of post-mortem multi-slice computed tomography (MSCT) due to the complex pathophysiology and the shortage of forensic specialists equipped with radiology knowledge. Therefore, a computer-aided diagnosis (CAD) system was developed to help with diagnosis. Most deep learning-based CAD systems only utilize 2D information, which is proper for 2D data such as chest X-ray images. However, 3D information should also be considered for 3D data like CT. Conventional 3D methods require a huge amount of data and computational cost when using 3D methods. In this article, we proposed a 2.5D method that converts 3D data into 2D images to train 2D deep learning models for drowning diagnosis. The key point of this 2.5D method is that it uses a subset to represent the whole case, covering this case as much as possible while avoiding other repetitive information. To evaluate the effectiveness of the proposed method, conventional 2D, previous 2.5D, and 3D deep learning-based methods were tested using an MSCT dataset obtained from Tohoku university. Then, to provide explainable diagnosis results, a visualization method called Gradient-weighted Class Activation Mapping was employed to visualize features relevant to drowning in CT images. Results on drowning diagnosis showed that our proposed method achieved the best performance compared to other 2D, 2.5D, and 3D methods. The visual assessment also demonstrated that our method could find the saliency regions corresponding to drowning.

摘要

即使借助死后多排螺旋计算机断层扫描(MSCT),溺死的法医学诊断仍然具有挑战性,这是由于其复杂的病理生理学和缺乏具备放射学知识的法医专家。因此,开发了计算机辅助诊断(CAD)系统来帮助诊断。大多数基于深度学习的 CAD 系统仅利用 2D 信息,这对于像胸部 X 射线图像这样的 2D 数据是合适的。然而,对于像 CT 这样的 3D 数据,也应该考虑 3D 信息。传统的 3D 方法在使用 3D 方法时需要大量数据和计算成本。在本文中,我们提出了一种 2.5D 方法,将 3D 数据转换为 2D 图像,以训练用于溺死诊断的 2D 深度学习模型。这种 2.5D 方法的关键点是,它使用子集来表示整个病例,尽可能多地覆盖这个病例,同时避免其他重复信息。为了评估所提出方法的有效性,使用来自东北大学的 MSCT 数据集对传统的 2D、以前的 2.5D 和基于 3D 深度学习的方法进行了测试。然后,为了提供可解释的诊断结果,使用了一种称为梯度加权类激活映射的可视化方法来可视化 CT 图像中与溺死相关的特征。溺死诊断的结果表明,与其他 2D、2.5D 和 3D 方法相比,我们提出的方法取得了最佳性能。视觉评估还表明,我们的方法可以找到对应于溺死的显著区域。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索