Suppr超能文献

不同嗅觉神经元类别的突触发育使用不同的时间和活动相关程序。

Synaptic Development in Diverse Olfactory Neuron Classes Uses Distinct Temporal and Activity-Related Programs.

机构信息

Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania 19107.

Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania 19107

出版信息

J Neurosci. 2023 Jan 4;43(1):28-55. doi: 10.1523/JNEUROSCI.0884-22.2022. Epub 2022 Nov 29.

Abstract

Developing neurons must meet core molecular, cellular, and temporal requirements to ensure the correct formation of synapses, resulting in functional circuits. However, because of the vast diversity in neuronal class and function, it is unclear whether or not all neurons use the same organizational mechanisms to form synaptic connections and achieve functional and morphologic maturation. Moreover, it remains unknown whether neurons united in a common goal and comprising the same sensory circuit develop on similar timescales and use identical molecular approaches to ensure the formation of the correct number of synapses. To begin to answer these questions, we took advantage of the antennal lobe (AL), a model olfactory circuit with remarkable genetic access and synapse-level resolution. Using tissue-specific genetic labeling of active zones, we performed a quantitative analysis of synapse formation in multiple classes of neurons of both sexes throughout development and adulthood. We found that olfactory receptor neurons (ORNs), projection neurons (PNs), and local interneurons (LNs) each have unique time courses of synaptic development, addition, and refinement, demonstrating that each class follows a distinct developmental program. This raised the possibility that these classes may also have distinct molecular requirements for synapse formation. We genetically altered neuronal activity in each neuronal subtype and observed differing effects on synapse number based on the neuronal class examined. Silencing neuronal activity in ORNs, PNs, and LNs impaired synaptic development but only in ORNs did enhancing neuronal activity influence synapse formation. ORNs and LNs demonstrated similar impairment of synaptic development with enhanced activity of a master kinase, GSK-3β, suggesting that neuronal activity and GSK-3β kinase activity function in a common pathway. ORNs also, however, demonstrated impaired synaptic development with GSK-3β loss-of-function, suggesting additional activity-independent roles in development. Ultimately, our results suggest that the requirements for synaptic development are not uniform across all neuronal classes with considerable diversity existing in both their developmental time frames and molecular requirements. These findings provide novel insights into the mechanisms of synaptic development and lay the foundation for future work determining their underlying etiologies. Distinct olfactory neuron classes in develop a mature synaptic complement over unique timelines and using distinct activity-dependent and molecular programs, despite having the same generalized goal of olfactory sensation.

摘要

发育中的神经元必须满足核心的分子、细胞和时间要求,以确保正确形成突触,从而形成功能性回路。然而,由于神经元种类和功能的巨大多样性,尚不清楚所有神经元是否都使用相同的组织机制来形成突触连接,并实现功能和形态成熟。此外,尚不清楚为实现共同目标而联合并构成相同感觉回路的神经元是否按照相似的时间尺度发育,以及是否使用相同的分子方法来确保形成正确数量的突触。为了开始回答这些问题,我们利用了触角叶(AL),这是一个具有显著遗传可及性和突触水平分辨率的嗅觉模型回路。我们使用活性区的组织特异性遗传标记,对两性在整个发育和成年过程中多种神经元类别的突触形成进行了定量分析。我们发现嗅觉受体神经元(ORNs)、投射神经元(PNs)和局部中间神经元(LNs)的突触发育、添加和细化具有独特的时间进程,表明每个类别都遵循独特的发育程序。这提出了一个可能性,即这些类别也可能具有独特的分子要求用于突触形成。我们遗传改变了每种神经元亚型的神经元活动,并观察到根据所检查的神经元类别,对突触数量产生了不同的影响。ORNs、PNs 和 LNs 的神经元活动沉默会损害突触发育,但仅在 ORNs 中,增强神经元活动会影响突触形成。ORNs 和 LNs 的突触发育受到类似的损害,而主激酶 GSK-3β 的活性增强,这表明神经元活动和 GSK-3β 激酶活性在共同的途径中起作用。然而,ORNs 也表现出突触发育受损,GSK-3β 功能丧失,这表明在发育过程中存在其他不依赖于活动的作用。最终,我们的结果表明,突触发育的要求在所有神经元类别中并不统一,它们在发育时间框架和分子要求方面都存在相当大的多样性。这些发现为突触发育的机制提供了新的见解,并为未来确定其潜在病因的工作奠定了基础。尽管具有相同的嗅觉感觉总体目标,但不同的嗅觉神经元类在独特的时间框架内发展出成熟的突触补充,并使用不同的依赖于活性的和分子的程序。

相似文献

1
Synaptic Development in Diverse Olfactory Neuron Classes Uses Distinct Temporal and Activity-Related Programs.
J Neurosci. 2023 Jan 4;43(1):28-55. doi: 10.1523/JNEUROSCI.0884-22.2022. Epub 2022 Nov 29.
2
Identified Serotonergic Modulatory Neurons Have Heterogeneous Synaptic Connectivity within the Olfactory System of .
J Neurosci. 2017 Aug 2;37(31):7318-7331. doi: 10.1523/JNEUROSCI.0192-17.2017. Epub 2017 Jun 28.
3
Dystrophin is required for normal synaptic gain in the Drosophila olfactory circuit.
Brain Res. 2019 Jun 1;1712:158-166. doi: 10.1016/j.brainres.2019.01.039. Epub 2019 Jan 31.
4
Neuron-Specific FMRP Roles in Experience-Dependent Remodeling of Olfactory Brain Innervation during an Early-Life Critical Period.
J Neurosci. 2021 Feb 10;41(6):1218-1241. doi: 10.1523/JNEUROSCI.2167-20.2020. Epub 2021 Jan 5.
8
Wiring stability of the adult Drosophila olfactory circuit after lesion.
J Neurosci. 2006 Mar 29;26(13):3367-76. doi: 10.1523/JNEUROSCI.4941-05.2006.
9
Activity-Dependent Remodeling of Olfactory Sensory Neuron Brain Innervation during an Early-Life Critical Period.
J Neurosci. 2019 Apr 17;39(16):2995-3012. doi: 10.1523/JNEUROSCI.2223-18.2019. Epub 2019 Feb 12.
10
Target neuron prespecification in the olfactory map of Drosophila.
Nature. 2001 Nov 8;414(6860):204-8. doi: 10.1038/35102574.

引用本文的文献

1
Glia control experience-dependent plasticity in an olfactory critical period.
Elife. 2025 Jan 30;13:RP100989. doi: 10.7554/eLife.100989.
2
Advances in the labelling and selective manipulation of synapses.
Nat Rev Neurosci. 2024 Oct;25(10):668-687. doi: 10.1038/s41583-024-00851-9. Epub 2024 Aug 22.
3
Glia control experience-dependent plasticity in an olfactory critical period.
bioRxiv. 2024 Oct 24:2024.07.05.602232. doi: 10.1101/2024.07.05.602232.
4
Molecular and cellular mechanisms of teneurin signaling in synaptic partner matching.
Cell. 2024 Sep 5;187(18):5081-5101.e19. doi: 10.1016/j.cell.2024.06.022. Epub 2024 Jul 11.
5
Odorant receptor co-receptors affect expression of tuning receptors in .
Front Cell Neurosci. 2024 May 20;18:1390557. doi: 10.3389/fncel.2024.1390557. eCollection 2024.
7
SynLight: a dicistronic strategy for simultaneous active zone and cell labeling in the nervous system.
bioRxiv. 2023 Jul 17:2023.07.17.549367. doi: 10.1101/2023.07.17.549367.
8
Early Draper-mediated glial refinement of neuropil architecture and synapse number in the Drosophila antennal lobe.
Front Cell Neurosci. 2023 Jun 2;17:1166199. doi: 10.3389/fncel.2023.1166199. eCollection 2023.
9
A conditional strategy for cell-type-specific labeling of endogenous excitatory synapses in .
Cell Rep Methods. 2023 May 11;3(5):100477. doi: 10.1016/j.crmeth.2023.100477. eCollection 2023 May 22.

本文引用的文献

1
Mechanisms governing activity-dependent synaptic pruning in the developing mammalian CNS.
Nat Rev Neurosci. 2021 Nov;22(11):657-673. doi: 10.1038/s41583-021-00507-y. Epub 2021 Sep 20.
2
Information flow, cell types and stereotypy in a full olfactory connectome.
Elife. 2021 May 25;10:e66018. doi: 10.7554/eLife.66018.
3
Conservation and Innovation: Versatile Roles for LRP4 in Nervous System Development.
J Dev Biol. 2021 Mar 14;9(1):9. doi: 10.3390/jdb9010009.
4
Structural aspects of the aging invertebrate brain.
Cell Tissue Res. 2021 Mar;383(3):931-947. doi: 10.1007/s00441-020-03314-6. Epub 2021 Jan 6.
5
Activity-Dependent Gene Expression in Neurons.
Neuroscientist. 2021 Aug;27(4):355-366. doi: 10.1177/1073858420943515. Epub 2020 Jul 30.
6
The Wiring Logic of an Identified Serotonergic Neuron That Spans Sensory Networks.
J Neurosci. 2020 Aug 12;40(33):6309-6327. doi: 10.1523/JNEUROSCI.0552-20.2020. Epub 2020 Jul 8.
7
Activity regulates brain development in the fly.
Curr Opin Genet Dev. 2020 Dec;65:8-13. doi: 10.1016/j.gde.2020.04.005. Epub 2020 Jun 25.
8
Mechanisms that communicate features of neuronal activity to the genome.
Curr Opin Neurobiol. 2020 Aug;63:131-136. doi: 10.1016/j.conb.2020.03.002. Epub 2020 May 13.
9
RIM-binding protein couples synaptic vesicle recruitment to release sites.
J Cell Biol. 2020 Jul 6;219(7). doi: 10.1083/jcb.201902059.
10
The Mushroom Body: From Architecture to Algorithm in a Learning Circuit.
Annu Rev Neurosci. 2020 Jul 8;43:465-484. doi: 10.1146/annurev-neuro-080317-0621333. Epub 2020 Apr 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验