Suppr超能文献

基于含噪标注的鲁棒点云分割。

Robust Point Cloud Segmentation With Noisy Annotations.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2023 Jun;45(6):7696-7710. doi: 10.1109/TPAMI.2022.3225323. Epub 2023 May 5.

Abstract

Point cloud segmentation is a fundamental task in 3D. Despite recent progress on point cloud segmentation with the power of deep networks, current learning methods based on the clean label assumptions may fail with noisy labels. Yet, class labels are often mislabeled at both instance-level and boundary-level in real-world datasets. In this work, we take the lead in solving the instance-level label noise by proposing a Point Noise-Adaptive Learning (PNAL) framework. Compared to noise-robust methods on image tasks, our framework is noise-rate blind, to cope with the spatially variant noise rate specific to point clouds. Specifically, we propose a point-wise confidence selection to obtain reliable labels from the historical predictions of each point. A cluster-wise label correction is proposed with a voting strategy to generate the best possible label by considering the neighbor correlations. To handle boundary-level label noise, we also propose a variant "PNAL-boundary " with a progressive boundary label cleaning strategy. Extensive experiments demonstrate its effectiveness on both synthetic and real-world noisy datasets. Even with 60% symmetric noise and high-level boundary noise, our framework significantly outperforms its baselines, and is comparable to the upper bound trained on completely clean data. Moreover, we cleaned the popular real-world dataset ScanNetV2 for rigorous experiment. Our code and data is available at https://github.com/pleaseconnectwifi/PNAL.

摘要

点云分割是三维领域的一项基本任务。尽管近年来基于深度网络的强大功能在点云分割方面取得了进展,但基于干净标签假设的现有学习方法可能无法处理有噪声的标签。然而,在真实世界的数据集中,类标签通常在实例级和边界级都存在错误标记。在这项工作中,我们率先通过提出一种点噪声自适应学习(PNAL)框架来解决实例级标签噪声问题。与图像任务中的鲁棒性方法相比,我们的框架是噪声率盲的,可以处理特定于点云的空间变化的噪声率。具体来说,我们提出了一种逐点置信度选择方法,从每个点的历史预测中获得可靠的标签。还提出了一种基于投票策略的聚类级标签校正方法,通过考虑邻居相关性来生成最佳标签。为了处理边界级标签噪声,我们还提出了一种变体“PNAL-boundary”,具有渐进的边界标签清理策略。广泛的实验表明,该框架在合成和真实世界的噪声数据集上都非常有效。即使存在 60%对称噪声和高级边界噪声,我们的框架也显著优于基线,并且与在完全干净的数据上训练的上限相当。此外,我们还对流行的真实世界数据集 ScanNetV2 进行了清理,以便进行严格的实验。我们的代码和数据可在 https://github.com/pleaseconnectwifi/PNAL 上获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验