Suppr超能文献

基于硬样本感知噪声鲁棒学习的病理图像分类方法

Hard Sample Aware Noise Robust Learning for Histopathology Image Classification.

出版信息

IEEE Trans Med Imaging. 2022 Apr;41(4):881-894. doi: 10.1109/TMI.2021.3125459. Epub 2022 Apr 1.

Abstract

Deep learning-based histopathology image classification is a key technique to help physicians in improving the accuracy and promptness of cancer diagnosis. However, the noisy labels are often inevitable in the complex manual annotation process, and thus mislead the training of the classification model. In this work, we introduce a novel hard sample aware noise robust learning method for histopathology image classification. To distinguish the informative hard samples from the harmful noisy ones, we build an easy/hard/noisy (EHN) detection model by using the sample training history. Then we integrate the EHN into a self-training architecture to lower the noise rate through gradually label correction. With the obtained almost clean dataset, we further propose a noise suppressing and hard enhancing (NSHE) scheme to train the noise robust model. Compared with the previous works, our method can save more clean samples and can be directly applied to the real-world noisy dataset scenario without using a clean subset. Experimental results demonstrate that the proposed scheme outperforms the current state-of-the-art methods in both the synthetic and real-world noisy datasets. The source code and data are available at https://github.com/bupt-ai-cz/HSA-NRL/.

摘要

基于深度学习的组织病理学图像分类是帮助医生提高癌症诊断准确性和及时性的关键技术。然而,在复杂的手动标注过程中,噪声标签往往是不可避免的,这会误导分类模型的训练。在这项工作中,我们引入了一种新颖的硬样本感知噪声鲁棒学习方法,用于组织病理学图像分类。为了区分信息丰富的硬样本和有害的噪声样本,我们利用样本训练历史构建了一个简单/困难/噪声 (EHN) 检测模型。然后,我们将 EHN 集成到自训练架构中,通过逐步标签校正降低噪声率。利用获得的几乎干净的数据集,我们进一步提出了一种噪声抑制和硬增强 (NSHE) 方案来训练噪声鲁棒模型。与之前的工作相比,我们的方法可以节省更多的干净样本,并且可以直接应用于真实世界的噪声数据集场景,而无需使用干净子集。实验结果表明,该方案在合成和真实世界的噪声数据集上均优于当前的最先进方法。源代码和数据可在 https://github.com/bupt-ai-cz/HSA-NRL/ 上获得。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验