Department of Environmental and Resource Engineering, Technical University of Denmark, Kgs Lyngby, Denmark.
School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China.
Microbiome. 2022 Nov 30;10(1):204. doi: 10.1186/s40168-022-01411-y.
The discovery of microorganisms capable of complete ammonia oxidation to nitrate (comammox) has prompted a paradigm shift in our understanding of nitrification, an essential process in N cycling, hitherto considered to require both ammonia oxidizing and nitrite oxidizing microorganisms. This intriguing metabolism is unique to the genus Nitrospira, a diverse taxon previously known to only contain canonical nitrite oxidizers. Comammox Nitrospira have been detected in diverse environments; however, a global view of the distribution, abundance, and diversity of Nitrospira species is still incomplete.
In this study, we retrieved 55 metagenome-assembled Nitrospira genomes (MAGs) from newly obtained and publicly available metagenomes. Combined with publicly available MAGs, this constitutes the largest Nitrospira genome database to date with 205 MAGs, representing 132 putative species, most without cultivated representatives. Mapping of metagenomic sequencing reads from various environments against this database enabled an analysis of the distribution and habitat preferences of Nitrospira species. Comammox Nitrospira's ecological success is evident as they outnumber and present higher species-level richness than canonical Nitrospira in all environments examined, except for marine and wastewaters samples. The type of environment governs Nitrospira species distribution, without large-scale biogeographical signal. We found that closely related Nitrospira species tend to occupy the same habitats, and that this phylogenetic signal in habitat preference is stronger for canonical Nitrospira species. Comammox Nitrospira eco-evolutionary history is more complex, with subclades achieving rapid niche divergence via horizontal transfer of genes, including the gene encoding hydroxylamine oxidoreductase, a key enzyme in nitrification.
Our study expands the genomic inventory of the Nitrospira genus, exposes the ecological success of complete ammonia oxidizers within a wide range of habitats, identifies the habitat preferences of (sub)lineages of canonical and comammox Nitrospira species, and proposes that horizontal transfer of genes involved in nitrification is linked to niche separation within a sublineage of comammox Nitrospira. Video Abstract.
能够将氨完全氧化为硝酸盐的微生物(comammox)的发现促使我们对硝化作用的认识发生了范式转变,硝化作用是氮循环中的一个基本过程,迄今为止,人们认为它需要氨氧化和亚硝酸盐氧化微生物。这种引人入胜的代谢途径是独特的,仅存在于 Nitrospira 属中,该属是一个以前只包含典型亚硝酸盐氧化菌的多样化分类群。已经在各种环境中检测到 comammox Nitrospira;然而,Nitrospira 物种的全球分布、丰度和多样性仍然不完整。
在这项研究中,我们从新获得的和公开可用的宏基因组中检索了 55 个宏基因组组装的 Nitrospira 基因组(MAG)。与公开可用的 MAG 结合,这构成了迄今为止最大的 Nitrospira 基因组数据库,包含 205 个 MAG,代表 132 个假定的物种,其中大多数没有培养代表。将来自各种环境的宏基因组测序reads 与该数据库进行映射,使我们能够分析 Nitrospira 物种的分布和栖息地偏好。Comammox Nitrospira 的生态成功是显而易见的,因为它们在所有检查的环境中都比典型的 Nitrospira 数量更多,物种丰富度更高,除了海洋和废水样本。环境类型决定了 Nitrospira 物种的分布,而没有大规模的生物地理信号。我们发现,密切相关的 Nitrospira 物种倾向于占据相同的栖息地,并且这种栖息地偏好的系统发育信号在典型的 Nitrospira 物种中更强。Comammox Nitrospira 的生态进化历史更加复杂,通过基因的水平转移,亚群快速实现了生态位的分化,包括编码羟胺氧化还原酶的基因,该酶是硝化作用中的关键酶。
我们的研究扩展了 Nitrospira 属的基因组清单,揭示了完全氨氧化菌在广泛的栖息地中的生态成功,确定了典型的和 comammox Nitrospira 物种的(亚)谱系的栖息地偏好,并提出硝化作用中涉及的基因的水平转移与 comammox Nitrospira 亚群中的生态位分离有关。