Barnard Jonathan C T, Lee Jacob P, Alexander Oliver, Jarosch Sebastian, Garratt Douglas, Picciuto Rose, Kowalczyk Katarzyna, Ferchaud Clement, Gregory Andrew, Matthews Mary, Marangos Jon P
Extreme Light Consortium, Blackett Laboratory, Imperial College London, Department of Physics, London, United Kingdom.
Front Mol Biosci. 2022 Nov 14;9:1044610. doi: 10.3389/fmolb.2022.1044610. eCollection 2022.
The development of ultra-thin flat liquid sheets capable of running in vacuum has provided an exciting new target for X-ray absorption spectroscopy in the liquid and solution phases. Several methods have become available for delivering in-vacuum sheet jets using different nozzle designs. We compare the sheets produced by two different types of nozzle; a commercially available borosillicate glass chip using microfluidic channels to deliver colliding jets, and an in-house fabricated fan spray nozzle which compresses the liquid on an axis out of a slit to achieve collision conditions. We find in our tests that both nozzles are suitable for use in X-ray absorption spectroscopy with the fan spray nozzle producing thicker but more stable jets than the commercial nozzle. We also provide practical details of how to run these nozzles in vacuum.
能够在真空中运行的超薄扁平液膜的发展,为液相和溶液相的X射线吸收光谱提供了一个令人兴奋的新目标。已经有几种方法可用于使用不同的喷嘴设计来输送真空薄片射流。我们比较了两种不同类型喷嘴产生的液膜;一种是市售的硼硅酸盐玻璃芯片,使用微流体通道来输送碰撞射流,另一种是内部制造的扇形喷雾喷嘴,它将液体从狭缝中轴向压缩以实现碰撞条件。我们在测试中发现,两种喷嘴都适用于X射线吸收光谱,扇形喷雾喷嘴产生的射流比商业喷嘴更厚但更稳定。我们还提供了如何在真空中运行这些喷嘴的实际细节。